Reflections on developments In
the area of supersonic combustion

Prof. H S Mukunda, CGPL - Dept of Aerospace Engg - lISc



Issues from the past




Background




Why discuss these now?
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Reduced mixing at High M




Analysis of the mixing behavior




Experiments on mixing




Gerlinger and Bruggeman, JPP, pp. 22 - 28 (2000)
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Uneshi, Rogers and Northam, JPP, pp. 158 - 164 (1989)
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a) Schematic of experiments




Uneshi, Rogers and Northam, JPP, pp. 158 - 164 (1989)
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Uneshi, Rogers, Northam, JPP, pp. 158 - 164 (1989)
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Comparisons with mixing data.




Gruineg, Avarshikov and Mayinger, JPP, pp. 35 - 40 (2000)




Gruineg, Avarshikov and Mayinger, JPP, pp. 35 - 40 (2000)
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Wilhelmi, Baselt and Bier, 14" symp. (int) on combustion,
197




Guoskov, Kopchenov, Vinogradov, and Waltrup, JPP, pp.
1162 — 1169, 2001




Guoskov, Kopchenov, Vinogradov, and Waltrup, JPP, pp. 1162 —
1169, 2001




Guoskov, Kopchenov, Vinogradov, and Waltrup, JPP, pp. 1162 —
1169, 2001
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Axial Location, X, mm
Mixing efficiency for C3Hy injection at M, = 6.




Henry, 12" symp (Int) on combustion, 1969
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Summary of mixing data




Combustion Experiments




Marquardt’s work — 1 (1964)
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Marquardt’s work — 2 (1964)




Marquardt’s work — 3 (1964)

8200 fps SUPERSONIC COMBUSTION TEST

VARIATION OF COMBUSTION EFFICIENCY WITH COMBUSTOR L‘ENGTH
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Marquardt’s work — 6 (1964)

FROM SUPERSONIC MIXING AND COMBUSTION TESTS

PRESSURE
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Waltrup, Dugger, Billig, and Orth, 16" Symp (Int) on
combustion, 1977

A — Primary Air

B — Secondary Air [0-0.7 kg/S])

C — Instrumentation Section, p, Tt

D — Interchangeable Injector >
Instrumentation: pw, Tw. Qw.

E — Combustor Exit Instrumentation Section

PCONE STATIC,
pt’, Gas

Mixing Chamber — Gas Sample Cart

F — J
g — Contoured Nozzle !L( — Vacuum

Steam Calorimeter — To Exhauster

-

D.C. Arc Heater
Nominal Operating
Conditions

pt = 3.1 x 108 N/m?2
wa = 1.3 Kg/S
E-GSOVolu

I = 11500 Amps




Waltrup, Dugger, Billig, and Orth, 16" Symp (Int) on
combustion, 1977
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Waltrup, Dugger, Billig, and Orth, 16t Symp (Int) on
combustion, 1977

HYDROGEN-FUELED SUPERSONIC COMBUSTORS
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Tomioka, Murakami, Kudo, and Mitani, JPP, pp. 293 - 300
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Schematic diagram of combusnr.




Tomioka, Murakami, Kudo, and Mitani, JPP, pp. 293 - 300
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Streamwise location from step, X (mm)

Wall static pressure, distributions with S0, S1, S2, and S3
configurations.




Tomioka, Murakami, Kudo and Mitani, JPP, pp. 293 - 300
(2001)
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Relations between total pressure lmss and specific impuls,




Tomioka, Murakami, Kudo and Mitani, JPP, pp. 293 - 300
(2001)
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Yu, Li, Chang, Chen and Sung, JPP, pp. 1263 — 1272, 2001
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Yu, Li, Chang, Chen and Sung, JPP, pp. 1263 — 1272, 2001




Yu, L1, Chang, Chen and Sung, JPP, pp. 1263 — 1272, 2001




Author

Air
Temp
K

Summary of ¢

Fuel
Orrifice
Dia, mm

A(Comb)
[A(Fuel)

{(dp/dx)
/ po}maX
(1/m)

Marquardt
>64

1280

192 x ?

127 x 84
/

12

Kanda et al,
97

1550 (s)

24x15+
94 x0.5

200 x 250
/60 = 800

Mitani, et
al, >00

1550 (s)
760(?)

24X 1.5 (?)

200 x 250
142.4 = 1200

Gruenig
et al, ’00

760
impure

158 or 4 x
.66

25x27.5
11.37 =
501

Owens
et al, ’01

850 (s)

9x0.8+
2x24

25x 25
/13,5=46.2

Tomioka
Et al, 01

1550 (s)

10x 25
3x8x25

94 x 51
1167.0 =
18.7

Yu et al,’01

1811 (s)
900

3x1.2
(Hyd)

5x04
(Ker)

51 x 70
10.48 (K)




Hence,

Designs that are simple and in conception no
different from what one would do for an after
burner for flame holding are able to hold the
supersonic flame and complete the combustion
In a length <1 m. Some of them were evolved
before the concern for slow mixing was even
known. Is this concern a researcher’s hype?

The convective Mach numbers In real cases are
low.

Other effects aiding mixing must have been
present....
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One Fundamental input




Marble , Hendricks and Zukoski, AIAA — 87 — 1880 (1987)

Grad p

Grodp
Alr

Vorticity and Distortiomn Induced by Shock
Pessage Over Hydrogen Cylinder ia Alr.




Marble et al, AIAA 90 — 1981 (1990)

Distorted Jet

Combustor Wall




An Isolator for a scramjet




Tomioka, Murakami, Kudo, and Mitani, JPP, pp. 293 - 300
2001
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Schematic diagram of combusnr.




Tomioka, Murakami, Kudo, and Mitani, JPP, pp. 293 - 300
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a3 () =0.35/¢,=0.59)
O-52*(¢ =0.35/¢ =0.61)
5t 0T "S3" (¢, =0.34/¢ =0.57)

Streamwise location from step, X (mm)

Wall static pressure, distributions with S0, S1, S2, and S3
configurations,




Isolator - contd.

There are other experiments in which the irrelevance
of Isolator is clear.

There are cases where the 1solator 1s shown to be
necessary could be handled differently without it.

For fixed flight conditions, or even a fixed set of flight
conditions, one can design the fuel injection system so
that graded heat release occurs in the combustor so
that upstream interaction can be eliminated.

This would help the elimination of a lossy
Intermediate element.
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Incomplete Combustion as a design goal? - 1




Incomplete Combustion as a design goal? - 2




Final Remarks

The design of scramjets can follow the traditional
principles excepting that the high speeds can be

very punishing in terms of performance loss for
small mistakes. This only requires advanced tools

of design like calibrated CFD to enhance the
reliability in the design.




