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J 57 engine without afterburner

It is a twin spool axial flow turbojet engine.
0.78 kg/kgf h at take off and

0.9 kg/kgf h at cruise

Both dry and afterburner versions

J57 is military version — used on B52 bomber
It is also called JT 3C for civil version
used on Boeing 707

Figure 1.5
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CPR =25
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FIGURE 4-1. F404/J79 scaled cross-section comparisoens.




Do same engines go to civil and military
aircraft? - Yes and Nol!...

Yes

« Bb52 Bomber has J57 engine; Boeing 707 and DC 8 aircraft have JT - 3C engine
* Both J57 and JT- 3C engines are the same. Differences, if any are considered minor.

« C-5A Galaxy military transport has TF39 engine; Boeing 737 and Airbus 320 have CF6 engine

« Both TF39 and CF6 engines are essentially the same frame. Beginning as TF39, the engine
benefited directly from new technology inputs in the form of components, materials, processes,
manufacture, and repair processes that went into CFé and also went into concurrent delivery of
TF39 engines. Subsequently, TF39 was replaced by CFé.

Reason

The flight regimes are subsonic (M~0.8). Applications do not require maneuverability

While civil applications demand lower sfc that high bypass ratio engines promise, the military
applications derive the same benefit - and why not?




Do same engines go to civil and
military aircraft? - Yes and Nol...

The answer is NO for supersonic military aircraft - why?

Supersonic military aircraft need high maneuverability. This requires
substantial Thrust/(drag at cruise speed) to enable sharp acceleration,
deep turn and fast climb, stealth and thrust-vector control

Such engines should be carried in the belly to ensure reduced radar
exposure (stealth need)

Reduction of aircraft drag is promoted by reducing the engine cross-
sectional profile. This means that Thrust/air mass flow rate must be
large.

This feature can only be met with by turbojets or low bypass ratio
turbofan.

Most military engines have a bypass ratio of 0.2 t0 0.3.



Advancements in Civil aircraft engines

Specific fuel consumption

Emissions — NO,, CO, UHC
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Pollutant emissions from engines

Pollutants



Low NOx a function of combustion technology and
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Flame Temperature

Techniques to reduce NO,:
NO, production increases with temperature, But not that much under fuel rich conditions. This is because

its generation is controlled by Zeldovich mechanism:
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O+ N, = NO + N,
N + 0, = NO + H,

N+ OH = NO + H,
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NO, and CO emissions (ppm)
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To reduce emissions, operate this
part in premixed condition

L R I Main Flame
premixed)

PilotFlame
(non-premixed)

-
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for flame stability B ruelinjection [N pilot flame zone

Lean Premixed Pre-vaporized idea



Prmary Operation Lean-Lean Operation
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Double Annular combustor — radially staged

Staged Combustion in DAC Combustor

Lean instability (flame-off, etc) is avoided by essentially maintaining a large
number of diffusion flames that are far more stable than lean premixed systems



Single Annular Combustor (SAC)
* Rich burning (tech insertion)

* Nostaging Double Annular Combustor [DAC)
* 75% of CAEP/6 NOx + Lean burning
» OPR~30 ‘ ‘ ' '
* Radial &circumferential staging  1yin Annular Premixing Swirler (TAPS I)
* 65% of CAEP/6 NOx » Leanburning
* OPR~30 « Staging within swirler
« 50% of CAEP/6 NOx
* OPR ~43

Figure 1. GE Combustor Technology Evolution






Advances in Military aircraft engines not
needed in civil aircraft engines

1. Stealth
2. Thrust vector control
3. Life of turbine blades
4. Screech in afterburners



Stealth Technology

* A stealth aircraft is made up of completely
flat surfaces and very sharp edges.

« When a radar signal hits a stealth plane,
the signal reflects away at an angle

« Surfaces on a stealth aircraft can be
treated so they absorb radar energy.

« The overall result is that a stealth aircraft
like an F-117A can have the radar sighature
of a small bird rather than an airplane.

« Exhaust temperature is also brought down
through better mixing of the hot gases
with air.
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Stealth Technology
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 Both F117 and YF 22 are stealth aircraft. YF22 has more modern inputs on stealth

* Engine exhaust passes over a portion of the wing surface with air being drawn between the
exhaust jet and the wing surface. The net effect is that the perceived jet exhaust has a lower

temperature — lesser infra-red signature.
* Both have thrust vector control



MILITARY ENGINES: P&W F100 — Powers F16

Thrust vector control



MILITARY ENGINES: P&W F119 - powers F22

Thrust vector control
surfaces




Life of Turbine blades — Pattern factor dependent I e B N
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Screech (instability) in Gas turbine afterburners
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« Screech is a serious problem in the afterburner of GT engines - 1s* T mode, f ~ 2 kHz

« Afterburner operating conditions are: p ~3 -5 atm, T ~ 2000 K.

* Heat release rates are much lower than in rocket engines where p ~ 100 atm, T ~ 3300 K.

« Inrocket engines, instability is catastrophic to the hardware.

« Inafterburners, it is unacceptable due to vibrations because the operation is man-rated

« The instability occurs despite acoustic damping provided by perforated liners

« The inference is that heat release (combustion) in the flow is phase-coupled with acoustics.



From: Italian work (1998)

6.2, Turbine Exhaust Diffuser

This component, placed downstream of Low Pressure Turbine
(LPT) exit. has different purposes :

e o recover the residual flow swirl at the turbine exit, in
‘ order to ideally feed the afterburner “core” section with a
no-swirl flow.
e to reduce flow velocity at R'H entry, in order to make
coimbustion in the core stream stable,
‘ * to straighten the flow in order to obtain a flow ideally
parallel to engine centreline, maximising engine thrust.

The first ot these functions i1s obtained with a row of vanes
located upstream of the conical diffuser and giving a “counter-

swirl ™ angle to the flow.

Troveti, A., Turreni, F., and Vinci, C., Afterburner design and development, Paper at RTO AVT symposium on Design
principles for Aircraft gas turbines, Toulouse, 1998



The actual situation in the afterburner

Comparison of Kaveri EGV exit profile with RR benchmark engine
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What is said

Civil aircraft engines and military engines can be the same when military application involves
subsonic speeds as it often happens in non-combat applications

Military applications involving supersonic flights and combat agility need a different class of
engines even if some segments of the technology are identical.

Modern developments in civil aircraft engines are related to emission reduction. SFC reduction
helps reducing emission of CO,, the prominent green-house gas.

Emission reduction of CO and NO, have some conflicting demands on air-to-fuel ratio - richer
zone helps reduce NO,, but increase CO. Increased temperature close to desired values
enhances NOx. These need judicious use of pre-mixedness, and staged combustion strategies.

Military aircraft share technologies with civil aircraft in terms of turbine materials and
production. Compressor design as well could be similar. Nozzle operations for advanced military
aircraft require thrust vector control.

Stealth feature needs integration of aircraft and engine in ways very different from civil
aircraft that does not need stealth.

Indian developments are around Kaveri dry engine and Small turbofan engine developments.
rerresennnns 1 NANK yOU.,



