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Introduction
• Measurement of burning velocities of gaseous fuel-air mixtures has been the subject of 

study for over five decades and a recent review by Konnov et al (2018) that has covered 500 
references on the subject. More than thousand researchers have been involved.

• The above review and several other papers contain data comparisons for many fuel-air 
mixtures from various sources using a number of different techniques.

• Also are contained predictions using premixed flame code (at least three codes) with 
reaction kinetics from different sources. 

• The dependences on initial temperature and pressure are extracted for the exponents of 
initial temperature and pressure. 

• There are many correlations for each of the fuels including straight chain hydrocarbons. 

• What appears clear from this paper is that the data show differences arising out of 
different researchers, different apparatus and schemes used for deduction for most fuels –
the differences being about ± 5 % for standard fuels and more close to ± 10 % for most 
other fuels. 

• While it is not obvious why the subject has received (or should receive) such an enhanced 
degree of interest on the part of researchers (and journals), this feature was what drew our 
attention



…Motivation

• As can be noted, the scatter in the experimental data 
and the differences in the predictions by various 
authors (with different mechanisms and codes) is 
about ± 7 %. 

• It is not easy to swear by theory (with complex 
chemistry and diffusion models) or experiment easily.

From Konnov, et al, 2018

From: Wu et al, 2018

The calculations seem to under-predict significantly for nearly all 
compositions at lower equivalence ratios.

…the numerical simulation was 
conducted with GR-3 mechanism 
through using s premix code CHEMKIN-
PRO to predict the burning velocity…..

• In view of these, it was thought: 

Would it be useful if simpler correlations can be developed for a range of fuels together by examining the basic 
causes for the variations with equivalence ratio (ϕ), and initial temperature (Tini)?
Influence of pressure effects could also be simplified 



No other correlations? Curvefits?
Dong et al (2010) have set out a correlation as follows.

The number of 
significant digits 
following the
decimal point 
in the curve fits
for a quantity
that is about
5 to 10 % 
accurate

is worrisome.
- also too 
specific



Methodology for the simplified correlation - 1

• Burning rate depends on the adiabatic flame temperature (Tf, ad) and so, the crucial dependence of the burn 
rate variation with equivalence ratio (ϕ) is related to the variation of Tf, ad with ϕ. 

• This is equilibrium thermochemistry dependent and not rate dependent.  
• It was thought that if this could be factored in, simpler correlations of greater generality can be obtained. 
• Seeking a dimensionless dependence between Su/Su(ϕ = 1) and Tf/Tf(ϕ = 1) was thought first appropriate. 
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• The dependence is linear 
• The constant slope is different for lean and rich cases. 
• It is inferred that the effect of flame temperature for rich 

cases can be different from the lean as the role of chemistry 
is more involved in rich mixtures. 

• The fact that the behavior is linear, but with different slopes 
is factored into the correlation. 

• It is noted that the burning velocity peaks at a richer 
equivalence ratio and hence may bring in some inaccuracy with 
the simplified correlation. 

• Such a behavior is taken valid for all hydrocarbons & alcohols



Methodology for the simplified correlation - 2
Initial temperature dependence is treated by plotting the burning velocity at φ = 1 as a function of initial temperature (Tini). 
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• This behavior is linear and can be described by a simple 
relationship.

• It is inferred that the relationship of Su with Tf,ad

reduces to this relationship after suitable linearization

• The dependence on pressure has been presented in 
Konnov et al (2018) for a number of fuel-air mixtures 
(see for instance Fig. 40 of their paper). 

• The variation set out here from different sources has a 
complex variation over the equivalence ratio. 

• It appears that for the present purposes of getting an overall correlation, it is appropriate to choose a single 
value for the pressure index.

• The pressure index of - 0.3 is chosen for all straight-chain HCs after checking out the value for minimum error.



Therefore the correlation is set out as

Su (cm/s) = 35.6 p-0.3 (Tf/Tf,max - C)/(1-C) [(Tini-150)/150] [1 + 0.3(Mf /16-1) exp{- 0.8*(Mf /16-1)}]      

Dependences on p                   φ                                Tini Fuel

with p = pressure (atm), Tf and Tf, max are the adiabatic flame temperatures at any φ and at φ = 1 (K), and 

C = constant = 0.65 for φ < 1 and 0.8 for φ > 1.

• The stoichiometric burning velocity of CH4-air is taken as 35.6 cm/s. This is the basic burn rate of all straight chain 
hydrocarbons considered here (Acetylene excluded) 

• The dependence with respect to equivalence ratio is obtained through the dependence on the adiabatic flame 
temperature (that can easily be obtained online from NASA CEA code for any condition of relevance here). 

• From an examination of the data of peak burning velocities of higher hydrocarbons it is found that it increases for 
ethane, propane and butane to about 40 cm/s and settles down for octane at 35 cm/s. While once can argue that 
these differences are small, the term within the flower brackets accounts for this observation. 

• All predictions depend on the above equation (No other constants introduced). 



Predictions and comparisons
Hydrocarbons  & Alcohols

The basis of experimental data is: Konov et al, 2018
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CH4 at
p = 1 atm

but increasing Tini

Comparisons
considered

satisfactory
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Hydrocarbons  
p = 2 atm,

Tini = 300 K
(& 373 K) 

C2H6

predictions
on the rich 
side are not
all that good

Is 
experimental
data good?
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Predictions at
higher pressures
do not seem 
good. But the
data quality
also does not
seem good.

Perhaps these 
measurements
have inherent
difficulties
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to behave very 
differently

CH3OH even if treated
as related to CH4 in its
combustion behavior 
with the oxygen atom
integrated into the
molecule allows
higher reaction rates,
no simple hypothesis
can explain the complex
behavior –

At 300 K, the burning 
velocity at the peak 
And under rich conditions
are seriously under-predicted
Also, at 373 K, lean flames 
are over-predicted

At 400 K, predictions seem
reasonable!  

No simple explanation seems 
possible for the observations.
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Predictions and comparisons for 
Hydrogen and Syngas compositions

• Experimental data are obtained from  Li et al, 2016; Wu, et al, 2018; Kannov et al, 2018; 
Verghese et al, 2019

• It is clearly noted that the peak in burning velocity occurs at very rich equivalence ratios

• This means the approach chosen for hydrocarbons seeking relationship with adiabatic flame 
temperature variation alone will not work – because stronger diffusional effects –of H2 come 
into play.

• Fortunately, the variation with equivalence ratio alone would be adequate, as is seen to 
follow………..



Syngas compositions considered 

CO, % v H2 % v CH4, % v CO2 %v N2, % v Mol wt Sources

SG1 15 15 0 15 55 26.5 21 Konnov et al, 2018

SG2 15 15 5 15 50 25.9 22.5 same

SG3 15 20 5 10 50 23.8 34 same

SG4 20 15 0 15 50 26.5 26 same

SG5 20 15 5 10 50 25.1 31.5 same

SG6 20 20 5 10 45 23.8 41 same

SG7 20 20 5 15 40 24.6 35 same

SG8 25 20 5 10 40 23.8 46 same

SG9 25 15 0 15 45 26.5 30 same

SG10 13.5 23.6 4.9 8 50 22.6 46 Wu, et al, 2018

SG11 17.5 30.7 6.4 10.4 35 20.9 70 same

SG12 23 40.1 8.3 13.6 15 18.8 85 same

SG13 27 47.2 9.8 16 0 17.1 97 same

SG14 95 5 0 0 0 26.7 60 Natarajan et al, 2007

SG15 50 50 0 0 0 15.0 160 Same

SG16 41.70 41.7 0 16.6 0 17.36 91.3 same

SG17 0 100 0 0 0 2.0 270 Konnov et al, 2018

Close to 
Producer 
gas from air 
gasification 
of biomass

Largely CO

H2



Data:  Konnov etal (2018). 
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Syngas compositions
Two approaches have been made for correlating the burning velocity

Out of which the more successful one is set out here.

A parameter, P1 is constructed such that it 

has the features of summation on mixture composition with 

individual burning velocities
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Su,min (ϕ = 0.6) = 1.1 (P1-11)

(Su – Su,min)/(Su,max – Su,min) = (ϕ – 0.6)/(1.05 – 0.6) 

Su = 1.1 (P1 - 11) + (2 P1 - 13) (ϕ - 0.6) for P1 < 62

= 1.1 (P1 - 11) + (2.5 P1 - 50) (ϕ - 0.6)  for P1 > 62

where fi’s are mole fractions of individual species in the

composition.

This correlation does not distinguish between CO2 and N2

This is not consistent with experimental data. 
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Comparisons are 
reasonably good
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Comparisons
are reasonable
except for
SG10.

It appears 
that
computational 
results favor
the simpler 
expectation!
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Compositions not much different
but burning velocity results are.
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C2H2 –air,
Rokni, 2015

Su (C2H2) = 100 ϕ + 25 cm/s, ϕ < 1.2

=  145 cm/s, 1.8 > ϕ > 1.2

This is just a curve fit since

relating to simple hydrocarbons

is tortuous, if not impossible.

It is because the reactivity of acetylene

arises from its triple bond
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Summary
• Premixed flame burning behavior of 45+ compositions of hydrocarbons + alcohols + hydrogen and syngas 

have been considered for study

• Simplified correlations the burning velocity of hydrocarbons + alcohols and hydrogen and syngas as three 
sets have been attempted.

• For hydrocarbons and alcohols for various initial temperatures and pressures (CH3OH needs more study):

• For Hydrogen:

• For Syngas:

• Several alternate, somewhat more involved correlations did not do as well as the above.

• If experiments are beset with inaccuracies of measurement, calculations are beset with issues of kinetic 
schemes and other thermochemical details. The final outcome from these efforts do not point to any of 
them being superior at this stage (accuracies ~ ± 7 to 10 %).

• If these data are intended for calculating for complex turbulent combusting premixed flows simpler 
correlations may as well do – except close to flammability limits where detailed chemistry matters

Su (cm/s) = 35.6 p-0.3 (Tf/Tf,max - C)/(1-C)   [(Tini-150)/150]   [1 + 0.3(Mf /16-1) exp{- 0.8*(Mf /16-1)}], Tf to be obtained from NASA CEC code 

Su  (H2, cm/s)  = 230 (φ - 0.2) (1-1.9fN2) (Tini-150)/150  cm/s    for 0.2  < φ < 1.4,  = 276 (1- 1.9fN2) (Tini-150)/150  cm/s      for 2.2 > φ > 1.4

P1 = (100fH2+36.5fCH4+35fCO) Su, max = 2 (P1 - 9) cm/s  for P1 <62 = 2.4 (P1 - 20) cm/s  for P1 > 62,     up to ϕ = 1.05, 

Su,min (ϕ = 0.6) = 1.1 (P1-11)

(Su – Su,min)/(Su,max – Su,min) = (ϕ – 0.6)/(1.05 – 0.6); Therefore,

Su = 1.1 (P1 - 11) + (2 P1 - 13) (ϕ - 0.6)  for P1 < 62

= 1.1 (P1 - 11) + (2.5 P1 - 50) (ϕ - 0.6)  for P1 > 62,    where fi’s are mole fractions of individual species in the composition.
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Compsn Expt Pred

SG1 21.0 21.8

SG2 22.5 24.3

SG3 34.1 34.9

SG4 26.5 24.4

SG5 30.7 29.4

SG6 40.0 38.0

SG7 35.0 35.0

SG8 48.5 41.3

SG9 31.0 27.1

SG10 47.0 39.4

SG11 68.0 54.4

SG12 85.0 76.6

SG13 100.0 95.0

SG14 60.0 115.3

SG15 167.0 181.3

SG16 91.3 73.2
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Comparisons of maximum Su are 
reasonable for 10 of the 16 
cases considered here.

The comparisons are not good 
for some, but bad for SG14. 
High CO cases have an issue
in this format.

Su (H2)   = 225 (ϕ - 0.2) (Tini-150)/150, for ϕ < 1.4,  270 (Tini-150)/150 fH2 for all ϕ > 1.4

Su(CH4)  = 36.5*(1.71ϕ-0.71) (Tini-150)/150    for ϕ < 1.0

Su(CO)    = 60 (ϕ –0.33) (Tini-150)/150 fCO for ϕ < 1.0

Su = [Su (H2) fH2 + Su(CH4) fCH4 + Su(CO) fCO] (1-1.3 fCO2-0.45 fN2) for ϕ < 1

where fi’s are mole fractions of individual species
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Composition: CO = 95 %, H2 = 5 %
Composition: CO = 50 %, H2 = 50 %

CO = 41.7 %, H2 = 41.7 %, 
CO2 = 16.6%

The poor comparison of composition SG14 cannot be 
understood because any simple modification is 
inconsistent with some good comparisons like of SG15

For SG16, it appears that computational results 
compare better with simple predictions compared to 
experiments. CO has been known to burn very slowly 
without H2O (moisture); CO + OH          CO2 + H is 
supposedly the most dominant reaction. 

CO problem remains to be resolved.


