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Abstract—In this paper the problem of ignition and extinction has been formulated for the flow of a
compressible Muid with Prandil and Schmidt numbers taken as unity, In particular, the problems of @ -
a jet impinging on a wall of combustible material and (ii) the opposed jet diffusion flame have been studied.
In the wall jct case, three approximations in the momentum equation namely, (i) potential Now, (ii) viscous
flow, (ii) viscous incompressible with & =1 and (iii) Lees' approximation (taking pressure gradient
terms zero} are studicd. It is shown that the predictions of the mass flow rates at extinction are not very
sensitive to the approximations made in the momentum equation. The effects of varying the wall tempcra-
‘ture in the case (i) 2nd the jet temperature in the case (ii) on the extinction specds have been studied, The
effects of varying the activation energy and the free stream oxidant concentration in case (ii), have also
been investigated. : ;

NOMENCLATURE
coefficient in the potential flow
expression u, = ax, representing
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operator = pu 3/0x + pv 8/dy;
non-normalized concentrations of
fuel and oxidant;

- the characteristic . time of the m,, m,,, normalized concentrations of fuel
flow [s71]; and oxidant;
specific heat at constant pressure  p, pressure [atm] ;
[cal/gdegK]; P, variable defined as = i, — i, /r;
diffusion  coefficient of gas Pr,Sc¢, Prandtl and Schmidt numbers;
{em?fs]; T stoichiometric ratio of the fuel;
fitst Damkghler number definedas R, universal gas constant [1-986 cal/g
=Zp [k + Da; mol degK];
activation energy for the reaction o, radius of curvature of the body;
[cal/g mol]; T, temperature of the gas [°K];
wall injection parameter defined T, nondimensional temperature;
by equation (30a); X, ¥ coordinates used, as indicated in
the conserved property; Figs. 1(a) and 1(b});
mass burning rate per unit area of . u, v, velocities in the directions of x
the mixture [g/cm?s]; and y;
total specific enthalpy of the mix- W, Wy, mass rate of production of oxidant
ture [cal/g]; and fuel per unit volume [g/cm? s];
heat of combustion of the fuel . Z, reaction rate constant in the equa-
[cal/g fuel]; tion (24) [em3/g s].
constant = 0 for two dimensional
flows and =1 for axisymmetric
flows; Greek symbols
gradient at the origin = —(dm,, B, percentage of oxygen in air;
dF)so0; &, coordinates of the similarity hypo-
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thesis defined by equations (9)
and (10);
A i, thermal conductivity [cal/cm s
: degK] and viscosity of the gas
[g/cm s];
o, density of the gas [g/cm?];
P equivalence ratio defined in the
, text; .
Lis parameter defined by equation (34).
Subscripts :
e, . edge of the boundary layer; _
—oo, o0, the quantities at negative and posi-

tive infinities respectively;
W, the inter phase or “'S™ state;

- ext, quantities at extinction;
eqm, chemical equilibrivm;
frozen, frozen state.

1. INTRODUCTION .

THE PROBLEM of ignition and extinction of
flames in forced convection systems is of
considerable interest.’ It is of importance in
transpiration-cooled systems and in re-entry
vehicles where the development of flame due to
boundary-layer heating is undesirable and in
some cases dangerous. Hf one could predict the
 extinction speeds for flames in such systems, it
would perhaps be possible to keep the missile
in a velocity spectrum. beyond the extinction
speeds and thus prevent the onset of flames.

Studies of a similar nature on opposed jet
diffusion flames will help in the evaluation of
_chemical kinetic data for fuel-air mixtures,
- specially those ‘which are dlﬂicult to handle in
the premixed state.

Some of the early studies on this problem
have been reviewed by Fendelt [1]. Linan {2]
formulated- the problem for the flow of a
compressible fluid and obtained the extinction
condition in a rather approximate manner.
Jain3] considered the problem of transpiration
~ cooling in a ramjet. It was of interest to know
whether, for a given set of conditions, flame

would extinguish. The study, made with a

- - rather ad hoc hypothesis for the fluid mechanical
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part, revealed that the flame would not ex-
tinguish. Fendell [ 1] considered the problem of
ignition and extinction of flames near the
stagnation point region, when an axisymmetric

jet of oxidant blows from an upstream infinity

against a reservoir of fuel He applied the
schematics of inner and outer expansions to
obtain the chemically frozen and equilibrium
states. The plot of maximum temperature vs.
first Damkohler number was used to establish

_ ignition and extinction characteristics.

Recently, Tsuji and Yamaoka [4] have con-
sidered the problem of wall jet, both analytically
and experimentally. They performed the thin-
flame analysis using boundary-layer approxi-
mations to obtain the position of the flame and its

" characteristics. However, it is not possible from

their analysis to predict the extinction limit due
to the fact that infinite rate chemical kinetics
has been used. They also performed experiments
on the extinction characteristics in a wind tunnel’
using a cylinder through which various fuels
were injected.

The problem of opposed jet diffusion ﬂameA
was first treated by Spalding [5]. A theory of
fluid mechanics as obtained from the analogue
solutions of Leclere {see [5]), was used. An
approximate procedure was developed forevalu-

ating lumetric heat release rates. Some
of the tusions of this theory “were later
verified Dy the experimental ‘work of Anagno-

stou and Potter [6]. Féndell and Chung [7]
considered the problem with single step rever-
sible reactions (with varying equilibrium con-
stants).. The asymptotic methods were used to
obtain the various limits governed by the
combination of Damkghier number and equili-
brium constant.

In recent times, Chung et al. [8] consndered.
the problem more systematically wusing
boundary—layer approximations. A parameter
consisting of various characteristics of the flame
was. developed . by which “‘cxtinction™ state
and “no-extinction™ state could be distinguished-

in the present paper the problem has beet

: rormulated for the case of a compressible fluid



IGNITION AND - EXTINCTION PROBLEMS

with Prandtl and Schmidt numbers taken as
unity. The formulation differs from those of
Linan [2] and Chung et al [8] in that the
chemical kinetic equation used the independent
variable as the conserved property, F and not
the similarity variable, 5. The use of the co-
ordinate F reduces the range of integration from
0 to 1, which is more convenient to handle
pumerically ; however, alternate procedures like
the Euler transformation on the independent
eoordinate could be adopted. In Section 3 of the
present paper, the problem of j jet impinging on a
wall of combustible material is considered. The

model used here is similar to those of [1, 3).
As distinct from [3], realistic fluid mechanical
solutions have been obtained and used in the
chemical kinetic equation. Further, the present
paper considers the effects of different approxi-
mations used for the fluid mechanics in the
evaluation of extinction conditions.

In Section 4, the problem of opposed jet
diffusion flame is studied. It is shown that the
potential solution is exact so far as the fluid
mechanical part is considered. As distinct from
[5], the exact numerical solutions of chemical
kinetic equation have been obtained. The effects
of varying (i) activation energy, (ii) concentra-
tion of oxidant at one end and (iii) jet tempera-
tures on_extinction speeds have been studied.

2. THEORY
2.1: Model flow geometry

(a) Figure 1(a} illustrates the flow near the
stagnation point when a perpendicular jet of
air (plane or axisymmetric) impinges on a wall
of combustible material,

(b) Figure 1(b) depicts the model of the {low
pattern for the case of opposed jets when two
opposing streams of fuel and air (of varying
equivalence ratios) flow towards each other.

2.2. Assumptions
Tke following assumptions are made in the
present analysis:

(i) Reaction is assumed to be single step.
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(11) Schmidt (S¢) and Prandil (Pr) numbcrs are
taken as unity.

(iii) Fourier’s law of heat conduction and Fick’s
law of diffusion are taken as valid.

{iv) Specific heat at constant pressure is assumed
constant.

(v} Controlling region of chemical Kinetics
lies near the stagnation point.

2.3. Laminar boundary-layer equations

The equations of motion and conservation
for the flow of a compressible fluid with chemical
reactions relevant to the present case can be

written as [ 1, 9, 10];

a i)

5 (0ur8) + 5 (purt) = 0 ()

dp o ( ou
L(u)=~—a+a—y(ﬂa—y) | 2

B () Y 1

L“ﬁ""a+”QJ-WWG®)

H .
+?wox (3)

Lifn,y) = % (D P aﬁu) - Wox )

s a o, .
L) = = (Dp % ) —Wy, )

R
p—pﬁT (6)

where L (operator) = (pu 8/0x + pv 8/dy);
M = average molecular weight; r = stoichio-
metric ratio of the fuel ; r, = radius of curvature
near the stagnation point = x; k = 0 for two
dimensional flows and 1 for axisymmetric flows.

Usmg the fact that w,, = W,,/r and defining
P = dig, — M Jrandh = CT + u?f2 + Hi, Jr,
the equations (3) and (5) can be replaced by
the following two equations:

& éP
L = (‘ “) i
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Oppooedjet. .
o [ o .y defined below are iatroduced:
=5 (%) ‘“’--" S

In obtaining (7) and (8) we have used the assump-
tion that Pr = Sc = 1. it may be noted here that
Schvab and Zeldovich (see [1]) were the
first to notice that the solution of the three
nonlinear equations [equations (3-5)] can be
reduced to the solution of (i) two linear equations
consisting of diffusive—convective balance of

the type (7) and (8) and (ii) one equation in- .

volving kinetics of the type of equation (5),
only when Pr = Sc = 1 (this also 1mphos' that
Lewis-Semenov number isunity): These assump-
tions (Pr = Sc ='1) are valid if the molecular
weights of all the species are nearly same.
However, for hydrogen-air this is not a good
approximation. The case of hydrogen—air has
" been considered here for the sake of comparison
with the results of [3]. Also it is felt.that the
conclusions: of the present paper will not be

affected quahtatwely by this approximation. *.

24, Similarity transformations .
The well known Howanh—Dorodmtzyn trans-
formations have been used to obtain a self-

sxmxlar set of equatlons The coordinates £ and

E=paax®™ 0k +1) @)

{P.ﬂ(k-!-l)}"' 5,
B 1

It may be noted that the equations (9) and (10}
have been obtained after introducing, the
potential solution near the stagnation point
(ie. u, = ax), into the general Howarth-Dorod-

(10)

nitzyn transformations. . The coefficient “a” -

in the potential solntipn gives a measure of the
characteristic time of the flow (1/5) and.depends

‘on the flow geometry. The values of *“a” for
" various flow geometries are tabulated in Table 1.

Table 1 i
. Characteristic

Geanietey dimension a
Cylinder R = radius of the cylinder  2u,t/R
Plane jet k= width of the jet & x uf4h
(two-dimensional}
"Axisymmetric jet D = diameter of the jet u,/D
Sphere R = radius of the sphere  3u./2R

.t u, = U__ inthe opposed jet case.

*

‘.
1
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. Further, introducing the stream functmn
- ¢as defined by

pux* = (8y/dy) and va" - —(all’lax) (11}
and letting further ) _
W(En) = 2O () - (12)

| we obtain the, following equations ﬁ-@m the
systcm(l—S): . .

cry +.U'"+(ki l)(p‘—f') =0 (13)

(CKY + (fH) = (14
(CPY +(fP) = 1)

1 w.,' |
(Cmi) + (fm,,) jza (16)

where C = (pu/p.u.). The primcs in the above

equations (13-16) dénote differentiation with
respect to n. The terms involving derivatives
of f; h, P and m,, with respect to { do not appear
. because of the similarity hypothesis.
Introducing a fuel fraction referred to the
unburnt state, F, we can write the “F. con-
servation equation [5] as '

(CFYy +fF =0.

The relationship between F, h and P are
. given in Sections 3.1 and 43. .

Further setting F = F/F,, ‘where F,, refers.
_ to the value of F at “S™ state [3) (interphase
state), we obtain the equation (17) as

(CFY +fF =0. (18)
If C = {, as will be shown later, we obtain
F'+fF =0. (18a)

The independent variable in the equation (16)

can be changed to F, using equation (17} to
yield:

Ay _ Wy
dF2 k+1) pac_ﬁ/an

This is the chemical kinetic equation, represent-

(19)
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ing the oxidant m The fluid mecha-
nics enters into this equaﬁon through “a”
and (dF/dn)} terms. The former (ie. 4) depends
on the potential flow over the given geometry
and can be casily determined by analytical or
other devices such as electrical analogy tank
and conducting paper technique. The latter (i.c.
dF/dy) depends on the numerical solution of -
the coupled equations (13) and (17) and these

being standard equations in compressible flow,

solutions are already available for some cases -
[10, 11]. {The equations (13) and {17) have to

be solved for somec assumed relations for

C = C(F) and p,/p. = [p.Ip] (F). For specific .

cases one should see [10, 11].}

. 2.5 Reactwn kinetic model

We assume a reaction rate expressmn given by
Wox = Z p'*™ gy MG, exp( —E{RT) (20)

for a reaction of the type -

ifiy) + mifi) = n(produc)  (21)

“where Z = tate constant; ], mand nare stoichio-
_metric coefficients of the reaction. We consider

in the present paper two reactions, hydrogen
oxidation and ethane oxidation:

. Hilg) +10,(8) ~ K,0()
CHe) + 340;(g) ~ 2C04(g) + 3H;0(8).

22)

(23)

In the present analysis we have used the second
order reaction which is both plausible and con-

‘venient [1]. The reaction rate expression can
'then be written as:

W,y = Zp? i, m,, exp[— E/R’T‘] 24)

It'is to be noted that in the relations (20) and
(24) only forward reactions have been considered

- and reverse reactions neglected. The reverse

reactions become important at very high tem-
peratures. It is felt that the reaction rate ex-
pression {24) is adequate for the present study.

Using the reaction rate expression (24) and
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the equation of state (6) in the equation (19),
we get

d?m,, zp, gy, T,exp(— E/RT)

aFr (k+ha T C(dE/dny
' . (25a)
After setting my, = Mg/, T = T/T.

my, = Mg, F = F/F, and T* = E/RT, we get

dzmox _ moxmfu exp (_ T‘/T)
i =TT T e@ray. B
where
D, = Zp,flk + Da. - (26)

The parameter D, represents the ratio of the
characteristic flow time (1/a) to the chemical
kinetic time (1/Zp,) and defines the first Dam~
kéhler number. It was ~first introduced. by
Fendell [1] in connection with the type of
problems discussed in this paper. Though this
nondimensional number .was used in the for-

mulations of Spalding [5] and Jain [3], it was -

not explicitly recognized so.

Hence the problem boils down to the solutions ‘

of the equations (13, 18, 25b) with the appro-
priate boundary conditions. As the boundary
conditions differ because of geometry, they
are detailed in the appropriate sections.

2.6. Scheme of solution '

Equations {13) and (18) have to be solved
numerically as simultaneous equations -after
assuming appropriate relations for C and
p./p in terms of F. From these calculations, the
profiles of f, F and F' with respect to 7 are
obtained. Then the values of F' at specific
intervals of F are interpolated and this infor-
mation is fed as data while solving the kinetic
equation (25b). The solution of the equation
© (25b) should then reveal the ignition and extinc-
tion characteristics. For the numerical solutions
of this paper we make the following approxi-
mations:

(i) C = 1. This implies that y a T. This
approximation is found to be generally good in
. 'many situations. .
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(i) p/p = lin the momentum equation (13).

This implies that the velocity boundary layer
is treated as incompressible. This approxima-
tion decouples the momentum equation from the
conserved property equation and thus leads to
considerable simplification in the numerical
work. Furthermore, it may be noted that similar
approximations have been made in [1, 3, 7].
" In the case of wall jct we have obtained some
solutions corresponding to the Lees’ approxi-
mation [8] which amounts to neglecting (p./
p —f™) term in the momentum equation. A
comparison of the solutions obtained using (i)
Lees’ approximation, and {ii) viscous incom-
pressible approximation with k = 1, just noted
above, has been made.

3. WALL JET CASE

3.1. Relationship between Moy, Myy, Tand F
Using the equations (14, 15, 18), we can obtain

h—h _p_ P=Fe

217
ey vakind =y S

F

where the subscript w refers to wall or interphase
state and e refers to the edge of the boundary

layer.
The expressions for m,, and T can be derived
in terms of m,, and F using the equation (26) as

_ o, sy o (i, — T
B ]
_ P (28)
) r
T=—-Bm, + F[T, =1+ Blmg,, — 1]
+1+8B (9
where
B = H#,, frcT.- (2%a)

It should be noted that the above equations have
been obtained after neglecting the kinetic
energy term in comparison with chemi
and sensible enthalpy terms. As such the present
analysis is strictly valid for subsonic velocities
inside the boundary layer.
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3.2. Boundary conditions
(i) On the momentum equation (13).

JO =1 = (/[ + D) ppa]  (30a)
where v, = wall injection velocity of the fuel
and f, represents the blowing velocity para-
meter,

S0 =0; f{o)=1. (30b, c)
(ii) On the conserved property equation (18).
F@) =1 and F(o)= (31a,b)

(iif) On the kinetic equation (25b).

First we have m,(n— )= 1. The con-
ditions at the wall, however, depend on the type
of fuel and are discussed below.

(a) Gaseous fuel injection. The conditions at
‘the interphase are obtained using Fick’s law as

(Dp 6?;’) = (pVit,2)w;
(Dpaai;') = [y, - U], (32b)

These on introducing the transformations yield
dm,,\ = _
dF Jear
dm,, _
dF Jpay

e =FICF QL)) (34)

It is to be noted that F'(0, f,) is obtained by
solving for F(x, f,) from equations (13) and {18)
using the boundary conditions (303, b, ¢
and (31a, b).

By using the boundary conditions (33a, b)
in the equation (28) we obtain ri,,., in terms of
m,,. as:

e ﬁax Kw — ﬁiax /l'
= =+ 1. 35
M =T ( 14y, ) =

Equation (35) reduces to that obtained in [4]
for the thin-flame approximation for which

_xuj,loiw;
—xelmp,, — 1) (33b)

where

(33a)
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,,,, = 0. We notice that the conoentrauon of
fuel becomes negative when =

L < (Fiyg, = Fipg Yr + i) (350)

It may be noted from the equation (35a) that '
the injection rate at which 7 S = 0 is less in the
case of finite kinetics than in the case of thin-
flame theory. The reason for the spurious result
that m,, < 0 for lower injection rates is that
if the rates of fuel transfer and of chemical
reaction are such that all (or nearly all) the fuel
is burned at the interface then the assumption of
homogeneous mechanism is violated and the
model in- the present form is no longer valid.
A mote general model including heterogeneous

reactions at the interface must be considered -

[4]).

(b} Liquid—solid fuel at the wall (reservoir). We
assume that the wall is at the temperature of
boiling-sublimation depending on the type of
fuel (liquid-solid). In addition to the conditions
{32a, b) we have the condition that the heat
transfer at the wall must be sufficient to cause a
change of phase from liquid-solid to one of

gaseous type. This condition is given by:

£,y . -
(5). =D

latent heat of vapourisatlon—-subh- 7

(36)

where L =

. mation. On transformation of equatxon {36),

we obtain ’ .

g
dF/ =y

L, = LT,

We now use the equations (33a, b, 35, 37)
in the equation (29) to obtain the expression for
W, interms of T, L, and B as:
1-T,+B- L1,

(HIrCTH( + 1)

-Lyx, a7

where

e

Moy, =

(38)

Thus the boundary conditions on n,, equation
are: ‘

(iii) m,(F = 0) = 1; (39a)
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dm,, . .
(-E_F—)f=1 = FwMax, (39b)

In the liquid-solid case, as opposed to gaseous
injection case, it is not possible to specify both

%, and m,,, when other conditions remain

unchanged. Therefore, we obtain solutions for
the gascous case for various y,, My, and T,
whereas in the liquid-solid case for various g,
and T,. : g

3.3. Solutions ' PR
(i) Potential approximation. It is known that
the solution of the momentum equation

Hy " 1 1) = L
f+f +m(1-f2)-0 40

allowing for slip at the wall [ (0} # 0] is

f=n . (41)
This gives the potential velocity distribution
near the stagnation point.
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Using the solution (41), we solve the equation
(18a) under boundary conditions {ii) of Section

3.2 to obtain
F = erfc(n/\/2) 42)

where

erfe(x) =1 —erf(x)=1— 2 e~ dy.
: Jr
)]

_ Therefore,

E = - \/33"72_

r

43)

The numerical procedﬁre-a&opted to obtain the
values of (dF/dn) at specific values of F is -

-, detailed in the Appendix. The F’ vs. F curve for

f.. = 002 appears in Fig 2. .
(i) Viscous cases: (@) k=1 and (b) Lees’

approximation. The equation (40) with k=1

and k — oo has to be solved numerically using

080
orz|- -
ol
0561
o-a8-

LWlie o401

d
d

G332
O-24}—
1] o

008

[ l

(0]

(ii)

(iv)

{iii)

L1 1 1

S
0 o1 02 03

U I T B O
ca O5 06 O7

|
58 03 10
F

* % FiG. 2 Plots of dF/dn(=F)vs. F. (i) Potential wall-jct: solution of F = erfc
. {#/J2); £i)-Viscous wall-jet: numerical of i + £ + (1/k + {1 =) =&,
F"+ fF = 0; (iii) Opposed jet: solution of F = 4[1 + erf (n//2)]; (iv) Wall-jet:
viwbulgLeea'lpp:olinnlion:numdﬂlsiolutiomoff"'+ﬁ'" =0,F +fF =0.

h )

¥
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the boundary condmons (30a, b, c}. These
solutions have then to be used in (18a) to obtain
the solution for F. The details are deferred to
the Appendix. The F' vs. F curves for f,, = 0-02
appear in Fig. 2 ;

(iii) Numerical solution of equation (25b). From
a thin-flame analysis of the probilem it can be
shown that for a given fuel, (dm, fdF); ., = —K,
takes extreme values for frozen and chemically
equilibrium states. {For frozen flow, K = 1
and for chemical equilibrium, K = {3 +
Ao AL + 2,) 7., }.] Hence to solve the equa-
tion (25b) for finite D,, a value of K lying be-
tween the extreme states is chosen and the
corresponding Dy which satisfies the outer
boundary condition on m,, is obtained. This is
repeated for other values of K. The numerical
procedure adopted is detailed below.
. The second order nonlinear differential equa-
tion {25b) was programmed in Fortran on
CDC-3600-160A computer. The Gill modifica-
tion of Runge-Kutta method was used for the
purpose of numerical -integration. A step size

Q029 (m, ) + O-M7T8F
T s k5921 = 05921 mu—1-26T3F
T°x19661, (dF/dw } valves of
potentiol cose {wall jet}

(L T——
aF :__ox- &0

ors

bt

LI I

e
3

025

™1 1 1 ¥ 1171

Lt
o-30
F
FIG. 3. Variation of oxidant concentration with F (D,

varying).

ol

L
< o235
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of 001 in F was used in generaluStcp size control
was made depending on the magnitude of the
reaction rate term. Step size checks showed that
a general step size of 0-01 would lcad to values
of (D,).y, Within an accuracy of -5 per cent. The
forward numerical integration was performcd
by taking the condition on m,, at F =0 and
choosing a value of K with a guessed value of
D;. Figure 3 shows the profiles of m,, as D, is
varied. It is seen that if D, is smaller than the
correct value, m,, takes negative values at some
value of F>0 or at F=1, {dm,/dF)>
XM, . If D, is larger than the correct value,
m,, profile curls up with successive values of
m,, becoming larger or at F = 1, (dm,/dF) <
XwMax . Using these characteristics, the iteration
procedure has been developed. The earlier pro-
cedure used by Jain [3] has been modified so
that even with a bad initial guess for D,, con-
vergence to the correct value occurs with
relatively smaller number of iterations.’

34 Results - '
{i) In order to check the ad hoc hypothesis for
the fluid mechanics (of [3]), solutions have been

.obtained .here for (a) the ad hoc hypothesis in

which (dF/dy) is constant throughout, (b) poten-
tial velocity ﬁeld and (c) viscous velocity field

(k= 1).
The data used in these calculations are:

H = 28670 cal/g hydrogen; E = 16000 cal/g

‘'mol; Z = 1-381.x 102 cm/gs; r=8; ¢ =024

cal/gmoldegK; T = 2000°R; T = 7380°R; p,
= 000106 1b/1t*; p'= 0-178 atm; f,, = 0-25. The
results are compared in Fig. 4.

(ii) The case when jet and wall temperatures
are at 300°K was considered to obtain the
ignition and extinction characteristics. Further,
these calculations have been performed to
check the following approximations: {a) poten-
tial velocity field, (b) viscous velocity ficld
{k = 1} and (c} viscous: Lees’ approximation.
These calculations were made on ethane (g)
with the following data:

H = 11350 cal/g ethane; E = 35730 cal/gmol;
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-
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FIG. 4. Comparison of mass flow rates for potential, viscous
and Jain’s cases. (i) Potential; (i) Viscous, k = 1;(iii) Jain's
case: dF/dn = constant.

T =T, =300K; r=3733;f, = 002; p, =
1atm;p, = 12g/l; ¢ = 041 cal/g degK.
The results are presented in Figs. 5 and 6.

(iii) The temperature of wall (T,) was varied
from 300°K to 2400°K and the solutions for

extinction conditions for the data of (i} were
obtained. The results are seen in Flgs 7 and 8.

4, OPPOSED JET

The equations to be solved are:
et " l — 2y =
R +JF =0 | (45)
dzm m,, My, €Xp ( - T./T) -
3 dF’._ =D =5 (dF/dny (46)
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states.
where
= FipufMox_ 3 T = T, and m, = Mg

The boundary conditions are:

(i) On the momentum equation (44). .

' fO) = (4Ta)

f{-w)=1 @7)
fi(0) = UpfU_q 47c)

where U, and U_,, are the free stream veloci- -
ties of the jets. In the case of Upg=U_,. by
symmetry we obtain another condition:

F0) =0 _ (47d)
(i) On the conserved property equation (45).
F(—o0)=0; Floo)=1 (48ab)
(iii) On the kinetic equation (46).
— - - — (¢-w + T / 5)
mF=0=1 myF=1)= —__—-—(‘.‘ﬂ.n T



IGNITION AND EXTINCTION PROBLEMS 501

ol N .
Vi Lees’ approximoti Strong burning
Potentigl case bronch
8 Extinetion
ol
.o
R Input
1 nd =
- - Fy=0-02,T*=120-0
M, 200015 m,, +0-019363F-0-00I5
4~ T+-8-6807 m,,~B-6607F +9-6607
s Middls branch {unstoble}
Yiscous, #=| cose :
Weak burning bronch
1 ] | S T R B
0T I08 107 108 1020 103 (028 102 036 1040 |0+ 0w 022

o,

FiG. 6. Piot of T, vs. D, showing ignition and extinc@ior_l states.

102

Input
79=0-02, T*#120
Hydrogen-fuel

- Deganeration of -
the three-bronched

&

10"

' .

l ! H
10° [T it 16"

2 3 4 S5 & 7 8 9§ w
s ' b,
F1G. 7. Variation of D,vs. K for various wall lemperatures.  FIG. 8. Variation of T,,,, with D, for various wall temperatures.
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where ¢ = equivalence ratio of the streams =
(fuel:air}{fuel :air) stoichiometric,
B = percentage of oxygen in air by
weight = (-232.

4.1. Relationship between My, T and F
The relationships between h, P and F are
obtained by using the equations (14, 15, 18a) as

h~h__ P—-p__
ho—h_ ° TP, =P__ (50)

_where
F o=0,F,=land P = Mg, — M.

Here, h has been defined in a slightly different
way as

L HAg, +dT - T,) .
c(jb = im)
where 7, = burnt temperature.
The equations (50) and (51) can be used to
obtain the required relationships between m,,,
M, T and Fas: :

1 (s~ 1)
fCha Py np et F[(% + r/p)
_ o - 1)] + 201
@-w +1/8)] (oo +1/B)
H ' H

= "m"'“”[m

1 1
% {(«pm +r/B) " (p-q +r/m}* =T ]

H.
MR v B

Moy = ~¢xﬁﬁ¢x-.» T = T/Tm

Again it may be noted that the kinetic energy
term has .been dropped in the equation (51)
while obtaining (52) and (53). )

(52)

where

42, Solutions .o, &°
- {0) Fluid mechanical solutions. We consider in
the present Paper jets of equal diameter and
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equal velocities. The solution of equatién (44)
with the boundary conditions {47a, b, d) is then
seen to be f = . This means that this solution

which is incidentally also the potential solution

is the exact solution for such a geometry.

(i) Conserved property equation {45). Using
the above solution for f in the equation (43),
we obtain the solution for F satisfying the
boundary conditions (48a, b) as ‘

F =4[1 + erf(y//2)]. (54)

so that,

dF 1
Fria meﬁp( ~-1*2).

The procedure to-obtain (dF/dy) at desired

intervals of F is the samé as in Section 3.34). .

The plot of F' vs. F appears in Fig. 2.

- (iif) Numerical solutions of equation (46). In the
present paper we consider cases when one Jetis

pure air (y » —co, F = 0) and the other pure

fuel (7 » 0o, F = 1). [This teans that in the

relations (52) and (53), ¢_, =0, ¢, — 0]

The chemical and thermodynamic data used:
‘are the same as in Section 3.4.(ii). The extreme
values of K are 1 and (r/M,,__ + 1) for frozen:

flow and chemical equilibrium respectively. The
outer boundary condition in the present case is
that m,, = 0. The numerical procedure is similar
to that detailed in Section 3.3 (jii).

Solutions for the case T._ = T = 300°K.

with varying activation energies and oxidant
concentrations at one end have been obtained
in this paper for ethane-air system. Further in

.order to study the effects of increasing jet
temperatures, the temperatures of both jets were °

varied from 300°K to 900°K and the.results of
the increase in extinction' velocities are pre-
sented in Fig, 10. To study the effect of increasing

the temperature of one of the jets, the tempera-

ture of the air jet was varied from 300°K to
1200°K, whereas the temperature of fuel jet was
kept at 300°K. These results appear in Figs. 11
and 12, : . :

Y poaued  eaessyeerorioeosgis pan geim
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5. DISCUSSION
- &1. Wall jet case

(a) Ramjet problem of [3]: Figure 4 shows the
plots of mass flow rate vs. X for the wall jet case
of 3.4.(i). It is seen that the potential approxi-
mation underestimates the mass flow rate (in
~ comparison with the viscous case, k = 1) by
about 10-12 per cent. It is also seen that the
ad hoc approximation is crude at nearly all
gradients except a small region where the two
curves intersect [(ii) and (iii) of Fig. 3]. However,
the main conclusion of [3] that the flame does
not extinguish once it is in a burning state, does
not change.

(b} Comparison of (i) potential, (ii) viscous,
k=1 and (iif) Lees’ approximations. Figure 5
shows the plot of D, vs. K for the three cases
mentioned above, following the present ap-
* proach. In this figure are depicted both ignition
and extinction conditions. Following Fendell
[1], the T, vs. D, curve has also been plotted
in Fig. 6. An examination of Figs. 5 and 6 shows
that both plots are equivalent in exhibiting the
ignition and extinction conditions. The. errors
in the prediction of mass flow rates of fuel at
extinction (p,»,) are obtained by using the
value of (D,),,, from Fig 5 in the equation

G= (pv)w =fwPe\/D‘¢Z/(Dl)en]' (55)

The following table gives the mass flow rates
at extinction obtained by the three approxi-
mations.

Potential Viscous, k=1 Lees’

Gig/cm?s) 1063 1-25 . 1as

Taking viscous, k = 1 as reference, we see
that the Lees’ approximation differs by 8 per
cent (overestimation) and potential approxima-
tion by 15 per cent {underestimation). It thus
appears that the results are not affected much
by the approximation made in the momentum
equation. It is felt, however, that the use of either
of the two viscous approximations is preferable
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to that of potential approximation with regard
to the accuracy of the prediction of mass flow

. rates, although this is yet to be substantiated by

comparison with the solution of the exact
momentum equation.

. (c) Effect of wall temperature on extinction
speeds. Figure 7 shows the effect of increasing

" the wall temperature on (D,),, The value of

(D)), decreases steeply with increase in wall
temperature. Taking the values of (D)), at
300°K as reference, we find that the extinction
velocity increases by 100 per cent for a tem-
perature increase of 300 -per cent. (Note that
D, ~ 1/a ~ 1/u,.)) Further increase in the wall
temperature leads to “no extinction” state, ie.
simple transition. It appears that to bring about
the “no extinction™ state the wall temperature
has to be raised to around 2400°K. In this case
the three-branched solution degenerates into a
single continuous branch. The T, vs. D,
curves (Fig. 8) reveal the same characteristic.
Recently Chung et al. [8] proposed a parameter
to distinguish the two states, ie. simple transi-
tion—“no-extinction” state and multiple tran-

sition—"‘extinction” state. The parameter written

in our notation for the problem is glvcn by

( mu.)oqn d .{ 1
Pc (Tm)ﬂ‘ueﬂ exp [ T (Tnu)fmun

If P, » 1, the state corresponds to simple tran-
sition. If P, €1, the state corresponds to
multiple transition. We see that Fig. 8 demon-
strates this qualitatively. The parameter P,
calculated for all the cases in Fig. 7 is tabulated
below (Table 2).

It appears that although the parameter P,
exhibits all the qualitative trends properly, the
coeflicient 10* seems large for the present case.
It appears that 10% is the proper one. However,
it is not possible to ascribe a definite value to
the coefficient as it will vary from problem to
problem.



jet- temperature on extinction speeds. As in the
wall jet case, (D). decreases with increase in
_ the temperature of the two jets. It is seen that
the curves are tending to become flatter and the
extinction condition is tending to occur at near
frozen states. It is felt that if the temperature
were increased still further, the “no extinction™
state similar to that obtained in the wall jet case
would be'obtained.

Figurcs 11 and 12 show the results for the case
when only air jet temperature is increased by
keeping the fuel jet at 300°K. It is shown that
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Table 2. Wall jet case: T, = 300°K, E = 71560 caljg mol.f, = 0-02
T {Tmanteqm ; - Type of transition
T, (Toodowes  from thin-flame P, Predicted ";"s'"on as from the numerical
{°K) analysis asin [§] work (present paper)
300 | 9376 279 x 1074 multiple ‘multiple
600 2 9412 142 x 10716 multiple " multiple
900 3 9-448 464 x 1072 multiple multiple
1200 4 9-494 693 x 107¢ multiple ~ multiple
1800 6 9:556 - 094 mutltiple multiple
2100 7 9-592 1210 simple simple
2400 8 9:628 952:5 simple simple
5.2. Opposed jet diffusion flame il .
(a) Effect of the oxidant concentration on ex- s rees0, T £x 300°
tinction velocity. In many experimental situ- 38 e
ations, one uses oxygen or oxygen mixed with ]
. : . . L)l ud
varying amouats of nitrogen for the oxidant. It it
is of interest in such cases to evaluate the effects 201 16
of varying the concentration of the oxidant. In -
Fig. 9 is plotted the variation of U,/(Uerdue | e :
and (TJem With m,,__: The maximum tem- ;-E, ol 1
perature and the extinction velocity, as expected, = - ~5~
increase with increase in oxidant concentration 18l
at — co. This result is in qualitative agreement el
- with the experimental results of Schaffer and. s
Cambel [13] in the case of flame stabilization o= 4
by opposed jets [vide Fig. 7, p. 286, Jet Propul. oL
(1955)]. We can expect neither fair agreement N E
nor very realistic results because the present 2 o 1 /
theory does not take account of heat losses and D - B B - s
the realistic reaction kinetics. - . 1Mr)
(b) Eﬁ-ed of Jet temper atures on extinction FIG. 9. Effect of variation of o:udanl concentration on
velocities. Figure 10 demonstrates the effect of (U and (T )oue

* when jet temperature change is 200 per cent, the

extinction speed goes up by 400 per cent. This
result is in qualitative agreement with the experi-
mental results of Schaffer and Cambel [13] in
the case of flame stabilization by opposed jets.
{c) Effect of variation in activation energy on
extinction speed. Figure 13, in which activation
energy vs. (D,)... plot is given, indicates that
(Dy)eq varies exponentially with activation
energy. This figure can be used to obtain the
values of D, for various activation energies.
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6. CONCLUSIONS
6.1. Wall jet case

L. It is shown that the two methods of ob-
taining ignition and extinction characteristics,
(i) by the present methiod, that of plotting D,
vs. K and (i) by Fendell's approach in which
Toux V5. D, plot is used, are equivalent.

2. The prediction of the mass flow rates of
fuel at extinction is not very sensitive to the
three approximations made in the momentum
equation. . ’ .

3. The extinction speed increases by 100 per
. cent for a wal] jet temperature increase of 300
per cent. Increase in temperature beyond a
certain value leads to “no-extinction” con-
ditions.

6.2. Opposed jet case - f -

1. The maximum temperature at extinction

and the extinction speed increase with increases

in the oxidant concentration of the main stream.
2. The extinction speed increases by 400 per
ccent for an.air jet temperature increase of 200
percent. .
3. Increases in the activation energy bring
about ‘exponential increases in the values of
extinction Damkéhler number.
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' _ APPENDIX
Inversion of F vs. F’ Relation
(a) We have

.F = erfe (n/y/2) (A1)
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so that _ : _
F = =JQ/mexp(-n2) - (A2)

The values of F' at specific values of F were
obtained by programming the problem on the
Ferranti Sirius computer. An approximation for
n for a given F was given in (A.1) and the value
of i correct to six decimal places was obtained

‘by using the Newton—Raphson procedure .of

iteration. The value of F" is then easily obtained
ysing equation (A.2). ' ;

(b) The solutions of the Falkner-Skan equa-
tion for k=1 and f, =002 and 025 were
obtained numerically and the solution of Blasius
equation were interpolated using the tables of
[14} |

The equation F" + fF' =0 with F(0) =1,
F(ao) = 0 was solved by the double quadrature

 Jexp(= {raman
F=1-2 ° :
b[exp(- ):fdn)dﬂ

From the tabulated values of F and F' at
specific values of #, the values of F' at desired
intervals of F were interpolated using Lagrange’s
interpolation formula, F

Résumé—Dans cet article, Ic probiéme de I"allumage ct de I'extinction a té formulé pour I'écoulement
d’unfhiide compressible avee des nombres de Prandt] et de Schmidt pris égaux & Punité. En particulier;
les problémes de (1) un jet frappant une paroi de matériau combustibie et (2) 12 lamme de dilfusion opposée
& un jet ont été Etudiés. Dans le cas du jet pariétal, on a étudié trois approximations de I'équation de la
quantité de mouvement, c'cst-a-dire (1) 'écoulement potentisl, (2) 'écoulement visqueux incompressible
avec k = 1 et (3) I'approximation de Lees (en supposant nuls les termes de gradient de pression). On montre
que les prévisions des flux de masse i Uextinction ne sont pas trés scmsibles aux approximations dans

- I'équiation dc la quantité de mouvement. On a étudié les effets de la variation de la température pariétale

dans le premier cas et de la température du jet dans le deuxidme cas sur les vitesses d'extinction. Les effets
de la variation dé I'énergic d’activation et de la concentration en oxydant de 1'écoulement libre dans Ic
: deuxiéme cas ont Egalement €1é étudiés.

Zusammenfassung—Es wird in der Arbeitdas Problem des Zandens und Loschens formuliert fiir den Fall der
Strdmung eines kompressiblen Mediums der Prandtl- und Schmidt-Zahl Eins. Insbesonders wurden die
Probleme (i) des auf die brennbare Wand auftreffenden Strahles und (ii} des gegenliufigen Diffusions-
flammstrahles untersucht. Im Fall des Wandstrahles wurden drei Naherungen in der Bewegungsgleichung
verwendet, nimlich: (i) Potentialstrdmung, (ii) z&he Strémung, (i) zih, inkompressibel mit k = 1 und fiii)
Lee’s Nitherung (wabei die Druckgradienten zu Null genommen werden). Es wird gezeigt, dass dic fiir den
Massenstrom beim Léschen errechneten Werte nicht sehr empfindlich von den in die Bewegungsgleichung
cingefiihrten Niiherungen abhiingen. Der Einfluss veranderlicher Wandtemperatur im Fall (i) und der
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Strahitemperatur im Fall (i) auf die Laschungsgeschwindigkeit wurde untersucht. Die Einfliisse verinder-
liche Aktivierungsenergic und der Konzentration des Oxidicrmittels im Freistrom fir den Fall (i) sind in
die Untersuchung einbezogen.

ABRRoTAINA—DB naunoit crathe copMyNHpoBaHa 3aRaYa BOCINAMEHEHHA M TameHuA opyu
TeUEHHH CHAMaexOR uaxocTH, np upcaax Ilpamnraa w I[IMmnaTa paBHHX eXuHMne. B
SACTHOCTH, OHAM MCCHeROBanM samadvn @ (1) manerns CTPYR Ha CTeHKY ropwuero marepEans
u (2) Berpenux guddysnonnnx mnauin. B nepeou ciyvae paccMoTpeHH TpH npHOMOKeHMA
YPaBHOHHA COXPAHEHHA KOIMYECTBA ABMMKCHAN, 4 HNeHAo : (1) norennmannmHoe Tevenns, (2)
BASKOE HEC:KMMaeMoe TeueHue npm & = 1 m (3) nprGmipkerne JIr (rre rpagaent KaBaenus
TPMHAT PasHKNK Hymw). [lokasano, WT0 THN ANMPOKCHMANEN YDABHOHHR COXPRHEHRA KONH~
9eCTBA ZBMMKOHAA HE 0YeHEb CHIBHO BIAAET HA PESYJNBTATH NIEPEHOCA MACCH NPH PAMEHER.
Hecaeoraro Bausnue NMeHANMERCA TONGEPATYPE CTEHKH B IEPBOM CIY9ae B TeMITEPATYPH
CTPYR BO BTOPOM Clly4ae B4 CKOPOCTh ramenns. Bo Bropox cayvae #syveHC TaKKe BANAHME
HeMEeHeHHAHA JHePrHM GKTHRAIMHA M KORLEHYPALWE OHHCAHTEIA B CBOGOXHOM MOTOKE.



