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Abstract

NEW formalism that brings out the wave character of

flame propagation of one-dimensional flames has been
explicitly presented for simple as well as complex kinetics
and realistic diffusion. While the combustion literature has
accepted the idea of a combustion wave, this is the first time
that the equations expressing this feature mathematically
have been presented. The governing equations are shown to
have a strong conservation form suitable for numerical com-
putation. They are solved for a single-step reaction using the
two-step MacCormack explicit scheme and are shown to be
very fast compared to the unsteady computational technique.
Compared to the unsteady techmique, application of the
same numerical scheme to complex kinetics seems to be
numerically less efficient.
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For the case of a single global step, the equation to be
solved for obtaining flame speed and flame structure can be
shown to be

aT k 3T +W”’ H )
at  pc, 9x? P Cp

where T is the temperature, H the heat of reaction, w” the
reaction rate, p the density, k/pc, the thermal diffusivity,
and ¢ and x the time and distance coordinates, respectively.
The boundary conditions are that 7 (x— —o0,t) — > T__, and
T(x—oo,t)—T,. In the laboratory-fixed coordinates, in-
tegration of Eq. (1) gives a propagating flame.! The crux of
the present method is in transforming the variables (7 x,¢)
into (P=d7T/dx;T,t).

By using the theory of partial differentials, Eq. (1) can be
transformed to
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The boundary conditions on P are,
P=0at T=T_, and T=T, “@

The above transformation implicitly takes note of the
monotonic variation of temperature from 7__ to 7., a
feature valid in adiabatic freely propagating flames. The
steady-state analog of the method was presented by
Spalding.?

Equation (2) is the one being sought and G represents the
local speed of propagation of the flame. Under steady condi-
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tions, (3G/0T)=0 leads to constant G. This is identified

with the flame speed S, as follows. Assuming that Eq. (1)

admits a steady propagating solution, we set T=g(x—S,?).
Observing that
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Eq. (1) reduces to
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Defining P=g’ and writing g” =P(dP/dg), the above equa-
tion gives
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which is the same as Eq. (3).
The approach for treating complex kinetics is similar. The
equations are
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where V; is the diffusional velocity,

NOS

h=Y, (h+h)Y,
1

the total enthalopy of the mixture.
The diffusional velocities are calculated from expressions
given in Hirshfelder et al.? If we use the transformations
dt—z (pu/p)dt: T=(T_—T~oo)/(Too_T—-oo)
P;=(3Y,;/9x),, and Pypg., =(87/0x)

the vector equations of flame propagation become
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U=[P;/Pnos+1> Pnos/Pnos+1s I/PNOS+1]T )]
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Fig. 1 F; vs Su; for 41 and 61 mesh points in 7.
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with
7=0, Y;=Y7*, P;=Pynos1=0 (13)

r=¢, Y;=Y7 (equilibrium), P;=Pyps,, =0 (14)

As in the earlier case, P; and G; are the dependent variables
and ¢ and 7 independent variables. Steady state is obtained at
(0U/3t) =0 and, thus, [F]=const. These give Gprps,;
=const and P;(Gpyps; — G;) =const. The only general solu-
tion is

G =Gy =---=Gpps.1 =95, the flame speed (15)

In the classical numerical schemes, the flame speed S, is ob-
tained through integration of the steady equations of species
from —oo to o as

S,,:S L dx/ (Y=Y ) (16)
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Similar treatment of Eq. (11) gives
1
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Thus, the equivalence between S, and G, is established at
steady state.

Equation (2) for global kinetics and Eq. (8) for complex
kinetics are expressions consistent with strong conservation
form and numerical treatment of such forms is well under-
stood in fluid flows. Further, the integration space is bounded
between 7=0 and 1 in the transformed space. This is of
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benefit in situations where adiabatic flame propagation is
treated.

MacCormack’s two-step explicit scheme is adapted for the
numerical scheme. Initial tests were conducted on Eq. (2)
with a choice of reaction rates such as

(W;’7p)(H/Cp)=C1~T(1_Tn—1) (18)

For this case of functions, one can show that

P=vC,(c,0/k) (1—7""") (19)
and
S, =~ (kp/c,)C, 20)

The expression for the reaction rate is realistic with n
characterizing the activation energy parameter. It was first
presented by Spalding.?

Computation starts with arbitrary profiles of P vs 7 satis-
fying P=0 at =0 and 1. Values of n of 2-10 have been
tested. Calculations were made on a small microprocessor
with a computational speed of 1/20th that of a main frame
speed (DEC1090). Convergence to exact solution was always
acquired in about 150-300 steps as long as the number of
steps chosen is about 1Y% times n with a minimum of about 7
steps. When the same problem was programmed as an
unsteady integration scheme in the x coordinate [based on
Eq. (2)], a DEC1090 was needed because of the storage re-
quireients and the CPU time was 10 times longer. This is
what prompted consideration of the complex reaction
scheme problem using the same technique. The calculations
showed several problems, including oscillations of profiles in
time and the need for using a Schumann filter to eliminate
the spurious oscillations and long integration times. Typically,
2000-2500 steps were required to obtain reasonable con-
vergence and the CPU times for the schemes turned out to
be probibitively large compared to the integration of the
equations in the time-space coordinate. While the former
needed about 60 min (CPU) for a 28 specie reversable reac-
tion (14x2), a 7 specie H,-O, system needed only 25 min.
The latter technique used an operator split scheme with an
implicit integration scheme for reaction and explicit for dif-
fusion. Integration with the explicit scheme even for
chemistry led to convergence, but an oscillatory of one in
about 20 min CPU time.

A typical march toward steady state is shown in Fig. 1
where F;, the error in the approach to steady state, is plotted
against the flame speed of each of the species. It is seen that
F; decreases by orders of magnitude before the flame speed
approach each other to near-constant values. The values of
G; along the flame are nearly constant in a region of
7=0.2-0.9 and are different beyond this range. Usé of dif-
ferent initial profiles leads to differing values in the region
beyond the range and has no effect on overall features such
as flame speed, peak mass fractions of radicals, etc.

In conclusion, this work has presented a way of casting
conservation equations for one-dimensional flames into wave
propagation form. Coupled with MacCormack explicit
scheme, the formulation leads to fast computation of the
flame structure of a single-step reaction. The numerical
scheme applied to problems of complex chemistry does not
appear efficient compared to other techniques and there is
need to explore other numerical schemes for this class of
formalism.
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