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Abstract. This paper  reports  on the numerical  s tudy of the linear stability of laminar  premixed flames under  
zero gravity. The study specifically addresses the dependence of stability on  finite rate chemistry with low 
activation energy and variable thermodynamic  and t ranspor t  properties. The calculations show that 
activation energy and details of chemistry play a minor  role in altering the linear neutral stability results 
f rom asymptot ic  analysis. Variable specific heat makes  a marginal  change to the stability. Variable 
t ranspor t  propert ies on  the other  hand  tend to substantially enhance the stability from critical wave 
number  of abou t  0.5 to 0.20. Also, it appears  that  the effects of  variable properties tend to nullify the effects 
of non-uni ty  Lewis number .  When the Lewis number  of a single species is different from unity, as will 
happen  in a hydrogen-air  premixed flame, the stability results remain close to that of unity Lewis number .  

Nomenclature 

A I = Frequency factor for the forward 
reaction 

A b = Frequency factor for the backward  
reaction 

Y~ = Mass  fraction of species i 
69~' = Volumetric reaction rate of species i 
% = Specific heat  at constant  pressure 
D i = Trace diffusion coefficient ofspecies i 
E = Activation energy 
h i = Enthalpy of species i 
h s = Sensible enthalpy of the mixture 

her = Heat  of combus t ion  of the reaction 
h ° = Heat  of format ion of species i 

Jg,j = Jacobian of the reaction i with respect 
to species j 

k = Wave n u m b e r  
Leg = Lewis number  of species i 
M i = Molecular  weight of species i 
ns = N u m b e r  of Species = 4, here 
p = Pressure 

Pr  = Prandt l  numbe r  
R = Universal  gas constant  

Re = Reynolds number  
s = Stoichiometric ratio 

T = Tempera ture  

T, = Reference temperature  = initial 
temperature  

Tad = Adiabatic flame temperature  
t = Time 
u = Streamwise velocity 
v = Transverse velocity 
x = Streamwise coordinate 
y = Transverse coordinate 
z = product  of density and u velocity 
x = Conductivi ty 

r = Non-dimensional  temperature  
31 = Flame thickness 
q~ = Dis turbance function 
0 = Activation parameter  
? = Ratio of specific heats 
p = Densi ty 
# = Laminar  viscosity 
e) = Coefficient of time in the disturbance 

Subscripts 

f = Per turbed quant i ty  
r = Value at reference condition 
s = Steady state 
i = Species identity, 1 for fuel, 2 for 
oxidizer, 3 for product  and 4 for inert 
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Introduction 

One dimensional laminar premixed flames can be obtained in the laboratory by 
premixing the gaseous fuel and oxidant in appropriate proportions and stabilising the 
flame in specially designed burners. Such flames are characterised by an upstream 
conduction-convection dominated region, a central reaction dominated zone and a 
downstream region containing product gases. The flames show a large decrease in 
density, and a very small change in pressure (because the dynamic pressure change is 
very small) through the flame. The stability of such flames has been a subject of study 
by a large number of workers. Starting with Landau [10] and Darrieus [4], a number 
of workers, including Margolis, Matkowsky, Sivashinsky and Clavin (see [2] for a 
detailed set of references) have contributed to this research. A scholarly review 
appears in Clavin [2]. Landau and Darrieus treated the one dimensional flame as a 
thin discontinuity across which density jump occurs. The dominant parameter that 
effects the stability is the disturbance wave length in a direction normal to the 
direction of propagation. They examined if such a lateral disturbance of wavelength, w 
(or wave number k) was amplified by the flow field. The leading order result is that the 
flame is unstable to all wave numbers. This result remained puzzling for a long time 
because stable laminar flames could be set up in laboratories. It is only later that 
effects of non-normal diffusion, curvature, and buoyancy on the flame stability were 
shown to reflect realistic features of stability. Studies by Sivashinsky, Matkowsky and 
others included the effects of non-normal diffusion (thermal and mass diffusion being 
unequal), first with low heat release and subsequently with significant heat release. 
The analysis of Pelce and Clavin [3], Matalon and Matkowsky [12], and Frankel and 
Sivashinsky [6] consider the limit of wave number tending to zero. The non- 
dimensionalization used are different in these analyses and the analysis of Pelce and 
Clavin is more general. One of the objectives of the three analyses conducted 
independently was to demonstrate the weak influence of viscosity in relation to 
conductivity and diffusivity. These studies obtain the dispersion relation (a result of 
the stability analysis giving the relationship between the growth rate and wave 
number) as o) = a(q)k - b(q, Le)k 2 where co is the growth factor, k the wave number, 
and a and b are coefficients depending on the temperature ratio (T ,a /T  o = 1 + q) and 
Le  = Dpcp/~,  the ratio of mass to thermal diffusivities. The expressions for a and b 
obtained by Matalon and Matkowsky [12] as well as Frankel and Sivashinsky [6] do 
not match (after appropriate transformations) even for critical wave number. The 
numerical differences are not large in the interesting range of parameters and the 
values predicted for critical wave number are the same for Le  -- 1. Results based on 
systematic analysis and numerical integration of disturbance equations has been 
made by Jackson and Kapila [8]. Their numerical calculations have spanned the 
complete range of wave numbers and they confirm the earlier results in the 
appropriate limits. They deduce from such analysis the influence of exothermicity and 
buoyancy on flame stability [9]. Increase in exothermicity is shown to destabilise the 
flame and buoyancy stabilise the flame. 
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All these studies are analytical in nature and have treated the high activation energy 

limit. In these studies the steady state profiles for temperature, velocity and mass 

fractions are exponential in character and the reaction zone asymptotes to a plane. A 
typical plot from the calculations of Jackson and Kapila  is shown in Fig. 1 for the 
largest parameter  of exothermicity of [7] and without buoyancy° The parameter  of 

exothermicity corresponds to a flame temperature six times the cold reactant 
temperature. The abcissa in Fig. 1 is ! = (1/Le - 1)E/RTad. In this figure, m and 0 are 
proport ional  to the activation energy, E for the finite rate chemistry models discussed 

later° 
The results obtained are for E/R  T,d --* co and for Lewis number not far from unity. 

It can be seen that at l = 0, corresponding to Le = 1, the unstable wave numbers are 

restricted to lower than 0.36. And as Le increases, the range of unstable wave numbers 

increases, Values of Lewis numbers of some species go up to 2 in the case of H2-air 

systems. For  Le = 2.0 and E/RT,  e = 4 for the Hz-air system, one obtains l = - 2  and 
kerit = 0.6. Thus the unstable wave number is increased substantially. At Le = 1, the 
unstable wave lengths are larger than 18 ( =  2n/kcrlt) times the flame thickness. The 

flame thickness is defined Jn these studies by 51 = kr/cz, rpru, where kr is the reference 
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Fig. 1. Stability plot from calculations of Jackson and Kapila (1984) with some results from present 
calculations shown. 
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conductivity, cp, is the specific heat, Pr = density and Ur, the flame speed. For cold 
reference conditions, this gives 

0.052 w/inK 
6s - (1390 J/kg K × 0.85 kg/m 3 * 1.8 m/s) 

-~ 0.0000244 m (0.0244 mm). 

For hot reference conditions, conductivity is almost 3.7 times the cold value and 
specific heat is 25~o higher. The product of density and flame speed is constant for the 
respective cold and hot values, and 61 - 0.072 mm. Therefore, the lateral wave length 
causing instability is 186y, about 1.3ram. In the above results, the principle 
controlling factor is hydrodynamics. The role of diffusion seems significant only for 
Lewis number departing from unity significantly. 

As stated earlier, in all of the above analysis the activation energy is treated as large. 
The overall activation energy has been estimated by Fenn and Calcote [5] to be 
16kcal/g mole for H2-air system and 28-30kcal/g mole for many stoichiometric 
hydrocarbon air systems. At typical flame temperatures of 2300 K, the activation 
parameter 0 = E/RT~ a ~ 3.50 for H2-air and 6.1 to 6.5 for hydrocarbon-air mixtures. 
Arguments concerning the validity of asymptotic analysis are made after estimating 0 
to lie between 10 to 20 [2]. As noted above, the perceived values of overall activation 
energy for equivalent single step reaction are much smaller. While this departure may 
still permit the validity of asymptotic analysis, there needs to be demonstration of 
these aspects. Also, one may find that departures are small with regard to a few 
aspects, while for others, depending on the controlling phenomena, they are not. 

Outline of the present work 

Noting that the earlier work has examined the influences of gravity and thermal 
expansion on the stability, the present work considers the aspects like finiteness of the 
reaction and variable thermodynamic and transport properties on the stability of 
flames. The linear stability of flames is investigated numerically with particular 
reference to a stoichiometric H2-air system by using a single step finite reaction model. 

Two classes of reaction models termed Model A and Model B are treated. Both are 
finite distributed reaction models. Model A is chosen because of the possibility of 
obtaining exact analytical solutions to the steady state (dr mean flow as is termed in 
stability analyses). It is primarily used to evaluate the effects of activation energy. 
Model B is in the line of classical single step reaction models where numerical 
solutions are needed even for steady state. In this model the effects of variable 
thermodynamic and transport properties as well as the effects of diffusion are explored 
in detail. In the single step reaction, there are four species, namely fuel (i -- 1), oxidizer 
(i = 2), product (i = 3), and inert (i = 4). If we take that the diffusion is modelled after 
the trace diffusion approximation (see [10] for details) one has four Lewis numbers, 
Lel, i = 1 to 4 defined by Lei = pD~cp/~C, where Di is the trace diffusion coefficient. 
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Instead of letting Lel vary through the field something which is easily possible, 
different diffusion models are chosen to bring out explicitly the effects of diffusion. 
First of these takes all the Lewis numbers to be equal to unity. This forms the reference 
case explored by the other investigators in asymptotic analysis. The second model 
takes all the Lewis numbers to be equal to 2.0. This value is chosen to represent the 
Lewis number of the Hydrogen fuel in the environment of the other species. The third 
model takes Le~ = 2 and Lej = 1,j = 2, 3,4. It is denoted by Le = 2111. This is chosen 
because in a typical Hydrogen-air flame the Lewis numbers for species other than 
Hydrogen are near unity. In addition, the sensitivity of the results to the accuracy of 
the steady state profiles is explored. 

The analysis makes several assumptions and approximations some of which are 
discussed later. In particular, the variation of pressure and molecular weights in the 
equation of state are ignored. 

The basic equations 

The two-dimensional problem is set into an x - y cartesian coordinate system, with 
the steady flame uniform in y and with variations along x. A simple step reaction, 
(fuel + oxidizer + inert) ~ (product + inert) is assumed. The conservation equations 
are nondimensionalised as follows: 

x y tur p T - u 
~ = ~, ~ = ~, ~ = ~, - = ~ , ,  p, ~, = r ,  - = ~ ,  - -  Ur 

v v, ~c = g : , ~ = ~ ,  Dip M s 
u7 = 7, ~, (Dp), - D,p MT, = & 

hs ~ T~s, 
Cp,r Tr (1) 

(2) 

In the above equations hs is the sensible enthalpy given by 

h, = cp, i d T, (3) 
Tr i = 1  

and M s is the steady state average molecular weight of the mixture. The non- 
dimensionalized equations are put down by dropping bars. 

~p apu ~?pv 
~7 + 7 7  + ~-y = o, (4) 

p~u Ou Ou ~p (4~au  02u 1 02v'~ 
a-7- + PU~x + pv Oy ax + L3 &2  + + - _ _  ey2 3 Ox~Ty) Pr' 

pe~ a~ o~ ep ( 4 e ~  e~ l e~u', 
e ~ - + P U ~ x + P V  ay ay + \3 ax e+-+@2 ~ O-~y) Pr, 

(5) 

(6) 
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pc~hs ahs ~3hs 0 ( c ~ T )  ~ (KePT'I_ ~ (hi+ h °) fly .,,, 
~-~-+puT~x +pv~y-~x  ~T~x +~y\ ~y/ i=1 cp, T~ p~u~0)~' (7) 

c~-s + pu ~x + pv @ - c~ x D,P c3x J + ~y D,p + p ~ u  cbTt, i = 1 , 2 , 3 ,  

(8) 

pT = 1. (9) 

In the above equations 69,'." is the reaction rate of ith species. The primes denote the 
character of volumetric reaction rate. It is to be noted that for the single step reaction, 

• IH • ~t 
• m 0 ) 3  0 9 3  

0 ) 1  ~ - - =  s (s + 1)' (10) 

where s = stoichiometric ratio, Di are the diffusion coefficients chosen in the present 
study to give the Lewis number of the ith species a desired value. The mass fraction of 
the inert species (i = 4) is obtained from the identity that the four mass fractions must 
sum to unity. 

The equation of state assumes pressure p is constant and is a good approximation 
for the stability study as well 1-12]. The variation in the molecular weight in the field is 
ignored (implying that Ms is unity). This is because the variation in the field is very 
small for most stoichiometric compositions, more particularly hydrogen-air mixture. 
This is due to the fact that the fraction of the fuel is to the extent of 2-4~o in the 
mixture. This approximation is more true for fuel lean compositions. Even in fuel rich 
limit mixtures the importance of other quantities like conductivity and specific heat is 
so much more that one can ignore the variation of molecular weight. The momentum 
equations ignore the variation of viscosity in the field. This is assumed by noting the 
already demonstrated weak effects [2]. On the other hand, the variation of 
conductivity is accounted for because it is known to influence the stability character- 
istics significantly. The subscript r refers generally to cold upstream conditions, 61 is 
the flame thickness chosen as 6y = xr/(p~urcp~). This implies that the Reynolds 
number based on the flame thickness is, 

Re = p,u,6y _ x, 1 
#, #~cpr Pr" (11) 

Thus the choice of 6I as above implies that the product of Reynolds number and 
Prandtl number of the flame is unity. Another nondimensional number which appears 

in the equations is Schmidt number = Sc = [tr/(Dp) r which is set to unity to obtain 

(Dp)r. 
These constitute the basic equations we need to solve. 
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The steady equations 

Model A 

As discussed earlier, the one-dimensional model utilises a formalism for which exact 

analytical solutions are available. The energy equation is set out as 

dZz dr hctff&" 
- (12) 

d2x dx prur(T,a- 1)' 

where z =  (T -- 1)/(T~a - 1) and hot iS the nondimensional heat of combustion. 
The thermodynamic and transport  properties are taken as constant and the relation 

reduces to p = constant after ignoring viscous and inertial terms. The choice of the 
reaction term is discussed in the section on solutions. 

Model B 

This model utilises the same approximations as above, and the energy equation is set 
out similarly. The reaction equation and the rate expressions are, 

2H2 + 0 2 ~ - 2 H 2 0  (I3) 

69" = Afp3r22 Yo2 e -Ey /RT --  AbpYH20 e-Eb/gT (14) 

The choice of the forward rate constants is discussed later. The backward rate 

constants are chosen to be consistent with the equilibrium constant for the reaction 
noted above. The resulting one-dimensional equations are solved by a code specifi- 
cally developed for the purpose [7]. 

The stability equations 

For  stability analysis, the independent variables chosen are z = pu, v, p, T and Y~. The 

various quantities are expanded around steady state denoted by the subscript s, as 

p(x,  y, t) = p a x )  + pAx)4~(y, t) 

z = zs(~) + zAx)4,(y, t) 

u = u,(x)  + u A x ) ¢ ( y ,  t) 

v = o + vAx)(~(y,  0 

p = p a x )  + pAx)¢(y,  t) 

T = T~(x) + T¢(x)¢(y ,  t) 

Yi = Y~,i(x) + Ys,i(x)dp(y, t) (15) 
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zs(x) = pus(x) = 1 because at steady state the equation of state gives constant mass 
flow through the flame. ~b is chosen as 

q~ = exp(-jo9t  + jky), j = ( ~ / ( ~ -  1). (16) 

Note that jo9 = o9, + Jo9i and the sign of o9, decides the stability of the flame. 
The stability equations for x-momentum contain u: and u: must be expressed in 

terms of other quantities. Manipulations of equation of state and the expression for z 

give 

uy = T~z: + T:, u~ = T~, (17) 

and 

1 
p:  = - T: ~ .  (18) 

The equat ions  for mode l  A 

The following equations for z:, p:, v:, and T:, are obtained after the substitution of 
the expansions into the Eqs ((4)-(8)) and the subsidiary relations (17) and (18) are used. 

z'y + j k  v-Z = -io9 TI (19) 
T~ T~ 2'  

_ T . . . . . . . . .  (20) P'I ~ : :  + ( Z - 2 ~ ) z : + ( k 2 g +  ~ - ~ ) z : + J ( g ) T : = : o g z : ,  

V~ - -  V'f - -  k2v  f - j k p :  = j cov y , (21) 
Us 

' o9T: (22) 7)' - r )  + (S(~) - k2)r: - ~ u: = j  ~ , 

where the primes denote the derivatives with respect to x. The term J(T~) is the 
Jacobian of the reaction rate and is obtained from steady state solutions to be 
discussed later (see Eq. 48). The above four set of equations constitute a seventh order 
system. These are solved under conditions of zero values as x ~ + ~ for all the 
variables, z:, p:, v: and T:. Since the number of boundary conditions is eight the 
problem is overdetermined and has nontrivial solutions for specific values of wave 
number, k. Thus the problem becomes one of eigen value. 
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The equations for model B 

The following perturbation equations are obtained when Eqs (15) and (16) are used in 
Eqs (4-8) and the subsidiary relationships (17) are also used. The perturbation 
equations for z, v, p and T are 

z'f + jk vf = --Jco Tf 
T~ T~ ~'  

p) - Pr u'} - k2uf + j ~ v' I + u'~zf + u'~ = jco -~, 

(23) 

(24) 

3 3 "k us u's k 3 3 1 
v } - ~ r  V'f-~k2vy +J ~ z'f + j k ~  zf +J~ T)-J~--r  kPf=Jcovy 4Pr T~ 

(--bp 2 dKs ) (  + 1 (h, h°) 6f ) T/ + + ~ T ~ '  T;-- k 2 ~ + Ji.r Ty 
K s Ks i= 1 Cpr Tr prUr 

1 ~ (h i+h °) ,,s 6f ~, 1 ~, 
ks ,=1 cprZ j=l p~ffl, ' ' Z  J, jYil---Ks ~ 'z l  = - J  ~ s - -  c°Ts, 

( 1 _ _  l d ( D i p ) )  , 
r'") - k2Y"~ + (O~p)s + (O~P)s dr~ r; ~,z 

1 3 s [ji ,rTf+ ~ ji,jyj,z 1 
+ (Dip)~ p.u, j= 1 

1 1 d(D~p) 1 1 
Y,'.sZ~ ~ p ) ~  ' ' D~ps dZ Y;"sT;" = - j  Z (Dip)s coYi,y, 

(25) 

(26) 

(27) 

where 

dcp 
cp = cp.s + T~ dT~' 

aco'.;' aco'.;' 
J id -  c3Yj' J i , r -  c~T 

(28) 

(29) 

It is possible to relate the Jacobians Jid and Ji,  T amongst themselves by invoking 
the stoichiometric relations between the reaction rates (Eq. 8) to obtain 

sJld = J2,j, --(s + 1)Jld = J3 , j ,  sJa,T = J2 ,T ,  - - ( s  -1- 1)JET = J3 ,T  (30) 
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In treating the variation of properties it is assumed that all the dependence of the 
thermodynamic and transport properties in the flow field is described in terms of 
temperature alone. This is not entirely correct since there is some dependence on mass 
fractions of various species as well. But for premixed mixtures, it is reasonably 
accurate, certainly at Lewis number of unity where all the properties are described in 
terms of one progress variable namely temperature. For nonunity Lewis numbers, the 
approximation implies that the extra dependence on mass fractions is ignored. The 
equation for pressure is in terms of uy and its derivatives. They can be expressed in 
terms of z f  and Ty using relations in (17) to obtain an equation for Pl given by, 

Pr 
p~ - y (4Uses + 8u':'s + 4 ~ : ~  + 4r) '  - 3 k % z  s - 3k~Ts +jk,'s) 

+ 2u'szs + u: 'y  + T' =jo~zf +jc~ T: 
: T~" (31) 

The primes on various quantities represent derivatives with respect to x. As can be 
noted, the perturbation equations require us, derivatives of us (up to the second order), 
first derivatives of T~ and Y~, and Jacobians of reaction rate with respect to Tand Y~. 

There is a further possibility of reducing the order of equations. One should 
normally solve three species conservation equations. However, the perturbation on 
the summation of mass fractions leads to 

~,:+~,:+~,:=0. (32) 

Hence it is sufficient to solve only two of the species conservation equations. The 
energy and species equations must be recast using the relations given in (8). For this 
case, we get 

7 ) '+  + - -  T~' T; k 2 
Ks -7-~ --  + - -  prUr J t , T  T f  

1 bp 
1 h a 3 f  [(J1A -- J1 3)Y1 f + (J1 2 - -  J x , 3 ) Y 2 , f ]  - -  ~-~p Ts'z f  = --J  Tss ~ss (DTf, 

Ks Pr Ur " ' ' Ks 

V Y:' [ --  k 2 ~,f + + - -  
k 

( ' ] 1 , 2  - -  J1,3)Y2, f  1 6f (JL~ -- JL3) YI,f (Dxp)s p~u~ 
1 ,~ f 

(DlP)s p~u~ 

1 1 1 6f  1 d(D~p) 
Y' Y~,szy -t - -  Jl rTs + - -  - -  T~' Y;,T 

(D~p)s 1,I Dxps (Dlp)s p~u~ ' (Dip), d Z  

1 d(Dlp) 1 1 
+ - -  Y;.s T} = -- j  ¢o Y~ .y, 

D ip  s dT~ T~ (OlP)s 

(33) 

(34) 
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1 ~s 
r _ _ 1  6$ (J2, ,J_ - -  J2 ,3)  Y2,S (D2P)s flrUr Y~"f + L - k 2  + (Dlp)s p,.u,. (J2,1 - -  J2,3)gl , f  

1 ! 1 6 I 
(D2p)~ Y~'f  (Dzp)~ ¥2'sZf + - -  J~ r T,. ((D2p)) ~ p,.u,. ' ~ 

1 d(Dzp ) 1 d(Dzp ) 1 t 
+ (Dzp)s dT~ Z'Y~,y 4 D2ps d Z  Y~,~T; = - j  Z (D2p)~ c°Y2'Y" (35) 

In obtaining the above equations, the following equalities obtained from Eq. (30) have 
been used. 

J2 ,2  - J 2 , 3  = s (J1 ,2  - J1,3) ,  J2,1 - J2 ,3  = S(J l ,1  - J1,3) ,  

ha = [hl + h] + s(h2 + h°z) -- (1 + s)(h3 + h°3)]/(cm. T~). 

(36) 

(37) 

If the choice of Lewis numbers is such that Lez = Lea, then the two species equations 
can be related by sYz,y = - ( s  + 1)Y3,y. This equation can be used to reduce the 
number of species equations to 1 and to modify the energy equation. Such a 
modification gives 

" + 2k~ T~' - k 2 T;+ . ~ T;+ +--h .  
~¢s Pr Ur 

- 2 Pr 6 sur J¢ Yl r - e-~P Z' z f ~ - J ~ ~s c° Ts' 

v:' ~ [ - k  2 1 6s J° l  Y~ ~+ ( -(~lp)s 1 
1 , f  " 2¢_ Dips p~u~ " + (Dap)~ 

1 6 s 1 dDlp  
t 

-~ (Olp)~ p~u,. J l " rT f  + (Dlp)~ dT~ Y;.~T; = - jco  

dDlp~  
d Z  J T" ~ ; ' s  - - 

t 1 
r~ (Dip), vl,s, 

(38) 

! 
(DIp)~ Y;.,szy 

where 

J a  = J l , l  --k s J1, 2 - (1 + s)J!, 3. (40) 

In this case the order of the equation to be solved is 9. I fLel  = 1, one can eliminate the 
equation for YI by combining with energy equation. The perturbation equation for 
enthalpy will have zero for the solution. For this case, (Dlp)s = (~cs/ep) and the 
temperature gradient terms associated with the transport properties are ignored. In 
this case the energy equation becomes 

- - -  r; - r~ k ~ + -,~ p~u. (J~ - h.Jl,~) ~:~ dx z~ = - j  ~ --~ o~r s. 
(41) 
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The steady state so lu t ions - -mode l  A 

Recognising the fact that  the Eq. (12) does no t  have the space co-ordinate  explicitly, it 

is possible to reduce the order  of  the equat ion by defining q = (dz/dx)  (Spalding, I-5]). 

One  can then recast the equat ion as 

q - 1 = --A~b", (42) 

where A represents the constants  on the right hand  side of Eq. (42). Equat ion  (42) has 

been subjected to analysis in combus t ion  literature. The reaction rate expression starts 

f rom exponential ly small values near z = 0 peaks at some value of  z depending on the 

act ivat ion energy and goes to 0 at z = 1. Similarly q is 0 bo th  at r = 0 and 1 and is 

positive definite over the range r = 0 to 1 for the adiabatic case considered here. Based 

on these observat ions one can show that  for a class of profiles q = z - z m where m is a 

parameter ,  one obtains A = 1 and & " =  m z m ( 1 -  z("- l)) .  Reversing the above 

argument ,  one can say that  for the reaction rate expression just  indicated (with m as a 

parameter),  the solution for q is as stated earlier. One  can integrate the equat ion for q 

and set out  the steady state solution as 

z~ = [1 + e x p ( - ( m  - 1)x + c)] -1/(m-1), (43) 

T~ = %(T~a -- 1) + 1, (44) 

u~ = T~, (45) 

dT~ _ (T~a _ 1) dz~ 
dx  -~x = (T~d - 1)(z~ - z~), (46) 

6Y" = mz~n(1 -- z~"-1)), (47) 

J =  ~ - = ( T a a - - 1 ) m Z z ~  m- l )  1 -  2 -  z(,,-1) . (48) 

In  the above equations,  the steady state result that  (pu)~ = I along with the equat ion 

of  state is used to obtain  equat ion (45). c in Eq. (44) is chosen so as to fix z = 0.5 at 

x = 0. This gives 

c = log(2 (m- 1) _ 1) (49) 

The solutions noted above are coded and used in the solution of  the stability 

equations. It  must  be noted that  the choice of c has no effect excepting on the 

resolution of  the eigen-solutions. With  the stability code using a grid distr ibution 

which allows finer resolution at the centre (x = 0) and increasingly coarse grid at x far 
removed  f rom this point, one expects better resolution by arranging the steady 
solution in this manner.  The stability code utilises its own grid distribution and 
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computes the various quantities using the analytical expressions noted above. The 

parameter m characterises essentially the activation energy i.e. m = constant (E/R Tad ). 
Typically values of m -  4 -  6 imply high activation energy and m--" 1.3 implies 
activation energies close to 16 kcal/mole of a range expected for H2-air system. This 
fact is based on the result that the reaction rate distribution, Eq. (47) has peak at zs 
close to 0.5, a feature seen later even with reaction rate distribution with z in the case 
of full chemistry. 

The steady state solutions--model B 

The numerical solutions for the assumed reaction rate for the He-air system are 
obtained from an unsteady code developed for the purpose [7]. The code also 
generates the Jacobians of reaction rate with respect to temperature and mass 
fractions of species to be used in the stability code. These steady state results are used 
in the stability calculations for non-unity Lewis number cases. The steady problem 
uses a uniform grid in z = S P dx. The grid is then transformed to the x = ~ dz/p 
coordinate. Then, the results of temperature, mass fractions, Jacobians are inter- 
polated using a cubic spline interpolation program into the grid required by the 
stability code. The temperature data then are spectrally differentiated by a Chebychev 
polynomial fit to obtain the first and the second derivatives. These profiles were found 
to be jagged and nonsmooth. Consequently, it was decided to curve fit those data 
which needed to be differentiated. A Pade polymonial fit was used to describe the 
temperature distribution with x and molecular weight, specific heat, conductivities 
and diffusivities with temperature. These were then used in the stability code. 

The stability solutions-numerical aspects 

The stability code used here was originally written for analysing the stability of high 
speed flows [11]. The perturbation equations are diScretized by a spectral collocation 
technique using Chebychev polynomials as basis functions. The code utilizes a 
staggered mesh to treat pressure. The resulting discretized equations are set out into a 
generalized[ matrix eigenvalue problem and are solved using the standard library 
routine I-11]. 

Model A 

In this case, all the steady state quantities were known in analytical form and the 
calculations on the stability could be performed in a straightforward manner. The 
code utilized a grid stretching with finest portion of the grids at x = 0. The region 
covered is from - oo to oo. It was therefore necessary to set a value for infinity. Several 
initial experiments suggested that the infinity could be set at x = ± 15. In a few cases, 
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the eigenfunction could not be resolved accurately since the decay was slow and for 
this purpose an infinity range was extended to ___ 20. (It must be remembered that this 
x is already nondimensionalized by 6y). Grid resolution studies were conducted and 
these showed that the results did not differ by more than 0.1~o when this number of 
grid points exceeded 121. Most calculations reported here utilized at least 121 grid 
points. An interesting aspect of the eigenfunction distribution concerned the fact that 
in most cases, pressure perturbations decayed the slowest towards the boundaries. 
Initial concerns regarding the effect on accuracy was resolved when it was determined 
that enhancing the boundaries and increasing the grid resolution did not affect the 
critical neutral wave number, but altered the eigenfunctions marginally. 

Model B 

Regarding the questions of the range of infinity and grid resolution, the experiences 
noted earlier are found to be valid. It should be noted that in the numerical results of 
steady flames, it was necessary to define a value of 6I" While it would be possible to 
estimate it from 6y = kr/prurcpr, it was convenient to assign a value 6 I,  and from this, 
obtain a consistent set of reference values. It should be remembered that the critical 
wave number, a result from the stability code is actually a non-dimensional quantity, 
the non-dimensionalising parameter being ~I" One would expect that the physical 
results obtained are independent of the choice of 6 I. This was ensured by varying the 
value of 6 s and obtaining the critical wavelength independent of 6y in one case. 

Results and discussion 

a. Model A 

Figure 2 shows the steady state profile of temperature, its first gradient the second 
gradient and the Jacobian. Most of the region of large change is restricted to a region 
- 4  ~< x ~ 4. The Jacobian varies significantly over the field and the variation is 
different for m = 9 and 2. The variation is larger for larger m and smaller for smaller m. 
The calculations lead to a set of critical wave numbers (zero growth rate ~ = 0) versus 
m, the activation energy parameter, as shown in Table 1. The peaks of the 
eigenfunctions are shown in the table for the cases U and P, the unperturbed and the 
perturbed to be discussed below. It can be seen from the table that the critical wave 
number varies from 0.36 at high m to about 0.40 at m-~ 1.3 corresponding to 
E -~ 68.9 kJ/mole. This constitutes a 10~ change and is not considered significant. 
The eigenfunctions are consistent with results from the asymptotic analysis. The 
imaginary part of z I,  real part of v I, imaginary parts of T s and Pl are zero. The other 
non-zero eigenfunctions are normalized by the peak of Ps. 

In studies of stability with strong convection such as mixing or boundary layers, it is 
found that the mean profile exerts a significant influence on the stability character- 
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Fig. 2. Steady-s ta te  profiles of t empera ture ,  first gradient ,  second gradient ,  and  Jacob ians  for m = 9 and 2. 

Table 1. Case: Mode l  A 

a. Critical wave number kerit v e r s u s  m 

Unperturbed Perturbed 
m case, kcrit case, kcrit 

9 0.362 0.3704 

4 0.375 0.382 

2 0.391 0.407 
1.3 0.401 0.411 

b. Peaks of  eigen functions 

m RI z I m  v R1 T R I p  

9 U 2.9 17.5 74.0 210.0 
9 P 3.3 19.2 79.1 225.6 

2 U 8.2 28.1 78.3 58.3 
2 P 9.1 29.3 79.7 62.5 

U = Unper tu rbed ,  P = Pe r tu rbed  
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istics. In order to determine the validity of this statement in the present context, and in 
addition to determine the features which affect stability significantly, subsidiary 
calculations were performed as follows. The initial profile of T~'(x) and T~"(x) were 
perturbed by a function 

37~  x 
4x( /co~ - x)/x  2 s i n - -  - -  

2 x ®  

chosen arbitrarily so that there would be fluctuations in the profile with zero at the 
boundaries x = 0 and x = xo~. Figure 3 shows the plots of steady profiles. As can be 
seen, both dT/dx and d2T/dx 2 profiles have considerable fluctuations. Table 1 shows 
the comparison of kerit and peak amplitudes of eigenfunctions for m = 9 and m = 2. 
The kerit is altered by no more than 3% and the eigenfunctions, are altered somewhat 
more, but less than 10%. There are considerable fluctuations in the resulting 
eigenfunctions, largely those for pressure. These fluctuations do not seem to affect the 
overall result on stability. Thus the errors in temperature profile gradients seem to 
make little difference to the results of stability. The reason for this is that the instability 
is largely driven by hydrodynamics and details of the profile do not matter 
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Fig. 4. Eigenfunctions for m = 9 and  2, unperturbed and perturbed. 

significantly. Figure 4 shows the eigenfunctions for both low and high activation 
energies, between the cases where the profiles are perturbed and the reference or 
unperturbed. Firstly consider the case with no perturbations (U). The structure of the 
eigenfunctions shows that their width is also about 4- 4. It is only the eigenfunction for 
pressure that seems to decay slowly. For the case of reduced activation energy, the 
temperature eigenfunction peak is larger than the pressure eigenfunction. This feature 
of the temperature eigenfunction having a peak higher than the pressure eigenfunction 
is seen in all the later calculations using the chemistry model B. Between these two 
cases U and P the effect of disturbance is less severe for m = 9 than for m = 2. 
Calculations were made by changing the Jacobian by 5% from the nominal value. This 
results in a substantial change in the critical wave number of 20%. The features 
concerning the eigenfunctions look very similar and seem altered quantitatively to a 
small extent. Thus the stability is very sensitive to the Jacobians but quite insensitive 
to the details of temperature profile gradients. 

The effect of Prandtl number has been discussed by earlier workers [2] and were 
deduced to be insignificant. The results of the dependence of the critical wave number 
on Prandtl number are presented in Table 2. The changes of kerit n e a r  Pr = 1 are 
marginal. Only in the extreme case of Pr = 0.05 does the change of kcrit from that of 
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Table 2. Case: Model B 

a. Critical wave number kcrit v e r s u s  Prandtl number 

Pr k (m = 9) k (m = 2) 

1.0 0.391 0.362 
0.7 0.377 0.374 
0.1 0.305 0.331 
0.05 0.300 0.301 

Pr = 1 look substantial. A study that considered Pr  --* 0 was conducted to determine 

if the viscous terms could be neglected altogether. Two calculations were made by 

dropping the viscous terms in the u and v momentum equations separately. Neglecting 

the viscous terms in the u equation for the case m = 2 leads to a 10~o reduction of korlt 
from 0.391 to 0.356. Neglecting viscous terms in the v equation does not lead to an 

acceptable solution satisfying the boundary  conditions. This situation is inferred to be 

related to the neglect of the highest order derivatives in v (v" term) which is a typical 

singular perturbat ion problem. This is why the approach of obtaining the limiting 
solution by letting Pr ~ 0 by retaining all the derivatives seems to lead to a physically 
consistent result. 

a. Mode l  B 

Numerical  calculations for a steady flame were performed for the stoichiometric Hz- 

air system with a single step reaction scheme, 2H2 + O2 ~--H20, with frequency 
factor = A :  = 1.1 x 1019, and an activation energy, E = 16kcal/mole. The choice of 

the parameters  was based on the calculations of the stoichiometric flame structure 
with full chemistry [-1]. Figure 5 shows the plot of reaction rate of hydrogen with 

nondimensional temperature from such a calculation. The peak in the reaction rate 
occurs at T ~- 4.2 whereas the adiabatic temperature corresponds to T = 8.156. For  

Le = 1, the reaction rate expression becomes a function depending on temperature 
alone. Now, one can estimate E (or 0) from the plot of reaction rate with temperature. 

Such a calculation yields E - 16kcal/mole. Such estimates are also available from 
earlier work (Fenn and Calcote, [5]). 

The steady flame speeds obtained from the steady state calculations are 1.63 
(Le = 1), 1.83 (Lei = 2), 1.70m/s (Lei = 2111). The case Le i = 2111 implies that the 

Lewis numbers for the four species 1,2,3,4 are 2,1,1 and 1. The results of the steady 
profiles and the eigenfunctions for the nominal case are shown in Fig. 6. The critical 
wave number  for chosen values of 6: are shown in Table 3. As can be seen, the critical 
unstable wavelength is about  0.9 m m  for the classical constant property case. For  
large activation energy, the critical wavelength would be about  1.05 m m  (not shown in 
the tables). 

The calculations with variable properties show results which are interesting. 
Variable properties seem to act as a stabilising influence, raising the unstable 
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Fig. 5. Reaction rate of H 2 with temperature for full chemistry. 

Table 3. Case: Model B, Le = 1, 0 = 3.5 

a. Critical wave number kerlt and 6 f 

5f  Wavelength, mm 
Case kcrit mm = 2n6Hkcrit 

Const. prop 0.42 0.06 0.9 

Var. prop 0.20 0.06 1.88 
Var. c~ 0.43 0.06 0.88 

Var. x and Dp 0.18 0.06 2.09 

b. Peaks of  eigen functions 

Case RI z Im v R1 T R1 p 

Const. prop 10.0 26.0 83.8 64.5 
Var. prop 8.0 25.0 74.4 66.5 
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properties, and curve-fitted expressions. 

wavelength to as large as 1.88 mm. The property variation that has caused the change 
is deduced from the next two results. Variable specific heat alone seems to slightly 
destabilise the flame. But conductivity and diffusivity variation coupled through the 
Le = 1 assumption is the most stabilising feature. It enhances the stability by a factor 
of three. Clavin [2] invoked the work of Clavin and Garcia I-3] and has indicated that 
the variable property effects can be taken into account by the use of thermal diffusivity 
at the hot condition rather than the unburnt condition. This effectively amounts to 
taking 6y about two to two and a half times higher than that estimated from the use of 
properties at unburnt condition. This effect then leads to enhanced stability. The 
results obtained in the current work are in conformity with the results of Clavin. The 
details can be understood by examining the results set out in Figs. 7 and 8. As can be 
noticed from these figures there are only weak differences in the profiles of the 
eigenfunctions, though the critical value of the wave number is significantly different 
between the constant and variable property case. 

Results of the kind described for model reaction were again established in the 
present case. These are that (i) an increase of dT/dx by 1.5 changes the predicted 
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critical wavelength by 2%, (ii) a change of (d 2 T/dx  2) affects the results even less than a 
change in dT/dx, and (iii) an increase of the Jacobian profile by 10% causes increase of 
critical wave number of 25% (these results are not presented here). 

Once the range of infinity (4- 15) and the scheme for interpolation were established, 
the approach to curve fit the steady state quantities was abandoned in favor of 
numerically differentiating the temperature profile and using other interpolated 
quantities directly. Calculations for constant properties turned out to be straight- 
forward and gave the results within 1% of those from the curve fit noted above. The 
calculations for variable properties turned out to be more difficult to perform and 
needed better resolution. This was accomplished with 151 grid points. (The CPU time 
for the calculations of the eigen spectrum and the eigen functions on Cray-2 super 
computer were 71 s for 121 grid points and 120s for 151 grid points for one case). 

Calculations have been made for two cases of nonunity Lewis number. In the first 
case, the Lewis number of all the species was 2. This corresponds to the conventional 
approach in which all Lewis numbers are equal. In the second case, the Lewis number 
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of fuel alone is taken as 2.0 and the Lewis numbers of the other species were set to 
unity. This follows from the calculations of H2-air either with full chemistry or single 
step chemistry with variable properties (see for instance, Bhashyam et al., [1]) which 
how that Le for Hz is about 2-2.5,  the Le for others is between 0.8 to 1.0. The steady 
state profiles of Y~,~ versus T and the Jacobians are shown in Fig. 9. The profile shapes 
for Let = 2 show significant deviations from a linear profile. This is expected from 
simple analyses of the variation of nondimensional temperature with fuel mass 
fraction near a cold boundary [15]. The profiles for Let = 2111 (Lewis number of 
various species in order of Hz, 02,  H20 ,  Nz), however, do not differ much from results 
with Le = 1. The difference in the results between Lei = 2111 and Le = 1 are caused 
by the diffusion terms. The stability results are summarised in Table 4. The critical 
wavelength is typically 1 .6-1 .8mm for the non-unity Lewis number cases. These 
values are only slightly smaller than the case Le = 1. These observed features are a 
consequence of the fact that hydrodynamics controls stability and details of flame 
structure are less relevent to stability. 

Figure 10 shows the plots of the real and imaginary parts of the eigenvalues as a 
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function of wave number, k. It may be noted that co, is less than 0 for the stable range 
shown by S in the figure. In all the cases excepting Lel = 2 (with variable properties), 
the imaginary part (oh) is zero in the unstable range. The imaginary part being zero 
implies that the solution gets amplified in a non-oscillatory manner. The growth of the 

Table 4. Case: Mode l  B - c o n t i n u e d  

a. Critical wave number kcrit and 5 F 

51 Wavelength, m m  

Case k e r i t  m m  = 2~6f/kcrit 

Const .  prop.,  Le i = 2 0.50 0.06 0.75 

Var. prop.,  Le+ = 2 0.24 0.06 1.57 

Const .  prop.,  Lei = 2111 0.48 0.06 0.785 

Var. prop.,  Le+ = 2111 0.21 0.06 1.79 

b. Peaks of  eigen functions 

Case  RI z I m  v RI T RIp  

Const .  prop.,  Le = 2 9.5 23.0 86.4 60.4 

Vat.  prop.  6.2 21.0 84.4 64.5 
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Fig. 10. E i g e n v a l u e s  ( r e a l  a n d  i m a g i n a r y )  a s  function of  wave  number• 

disturbance in time for any given unstable wavelength can be estimated from the 
results of Fig. 10. The time for doubling of disturbance amplitude can be obtained 
from the disturbance Eq. (16) as 

0.693 6 s (50) 
t2 , ,~  ~ , ( k )  u ,  

The time for doubling the amplitude scales like the characteristic time for the flame, 
the coefficient being typically about 5 to 20. These values will be relevent when making 
a full nonlinear simulation with a disturbance. 

Concluding remarks 

This paper has considered the problem of the stability of laminar flames, particularly 
the H2-air system. The effects of finite rate kinetics and variable thermodynamic and 
transport properties are explored. The perturbation equations are spectrally discret- 
ized and numerically solved to obtain the eigenvalues and the corresponding 
eigenfunctions. These calculations show that 
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1. The effect of finite activation energy on the critical wavelength is not significant. 
Reduction of the activation energy to values corresponding to the H2-air system 
reduces the critical wavelength by about 10~. 

2. Variable transport properties enhance the stability and enhance the critical wave- 
length by a factor of 2-2.5. 

3. Results for realistic parameters show that the critical unstable wavelength for 
stoichiometric the H2-air mixture is about 1.8-1.9 mm. 
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