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Abstract

This thesis is concerned with studies on spatially developing

high speed mixing layers with twin objectives: (a) to provide en-

hanced and detailed understanding of spatial development of two-

dimensional mixing layer emanating from splitter plate through large

eddy simulation (LES, from now on) technique and (b) to evolve a

consistent strategy for Unsteady Reynolds Averaged Navier-Stokes

(URANS) approach to mixing layer calculations.

The inspiration for this work arose out of the explanations that were being

developed for the reduction in the mixing layer thickness with compressibility

(measured by a parameter called convective Mach number, Mc). The reasons

centered around increased stability, increase in compressible dissipation that

was later discounted in favor of reduction in production and pressure-strain

terms (with Mc, of course). These were obtained with direct numerical sim-

ulations (DNS) or LES techniques with homogeneous shear flow or temporal

mixing layer. As apart, there was also a wide held view that using RANS

(steady) techniques did not capture the compressibility effects when used in a

way described above and so classical industrial codes for computing mixing-

layer-embedded flows are unsuitable for such applications.

Other important aspects that come out of the examination of literature

are: the mixing layer growth is controlled in the initial stages by the double-

boundary layer profile over the splitter plate and results in the mixing layer

growth that is somewhat irregular due to doubling and merging of vortical

structures. The view point of a smooth growth of the mixing layer is a theo-

retical approximation arising out of the use of a smooth tan-hyperbolic profile

that results at larger distances from the splitter plate. For all practical appli-

cations, it is inferred that the initial development is what is important because

the processes of ignition and stable combustion occur close to the splitter

plate. For these reasons, it was thought that understanding the development

of the mixing layer is best dealt with using accurate spatial simulation with

the appropriate initial profile.

The LES technique used here is drawn from an OpenFOAM approach
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for dissimilar gases and uses one-equation Eddy Model for SGS stresses. The

temporal discretization is second order accurate backward Euler and spatial

discretization is fourth order least squares; the algorithm used for solving the

equations is PISO and the parallelized code uses domain decomposition ap-

proach to cover large spatial domain.

The calculations are performed with boundary layer profiles over the split-

ter plate and an initial velocity field with white noise-like fluctuations to sim-

ulate the turbulence as in the experiments. Grid independence studies are

performed and several experimental cases are considered for comparison with

measured data on the velocity and temperature fields as well as turbulent

statistics. These comparisons are excellent for the mean field behavior and

moderately acceptable for turbulent kinetic energy and shear stress.

To further benefit from the LES approach, the details of the mixing layer

are calculated as a function of four independent parameters on which the

growth depends: convective Mach number (Mc = (U1−U2)/(a1 + a2)), stream

speed ratio (r = U2/U1), stream density ratio (s = ρ2/ρ1) and the average

velocity of the two streams ((U1 +U2)/2) and examine the various terms in the

equations to enable answering the questions discussed earlier. It is uncovered

that r has significant influence on the attainment of self similarity (which also

implies on the rate of removal of velocity defect in the double-boundary layer

profile) and other parameters have a very weak influence. The minimum veloc-

ity variation with distance from the splitter plate has the 1/
√

axial distance

behavior like in wakes; however, after a distance, departure to linear rise oc-

curs and the distance it takes for this to appear is delayed with Mc. Other

features such as the coherent structures, their merger or break up, the area

of the structures, convective velocity information extraction from the coher-

ent structures, the behavior of the pressure field in the mixing layer through

the field are elucidated in detail; the behavior of the correlations between pa-

rameters (like pressure, velocity etc) at different points is used to elucidate

the coherence of their fluctuating field. The effects of the parameters on the

energy spectra have expected trends.

An examination of the kinetic energy budget terms reveals that
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• The production term is the main source of the xx turbulence stress,

whereas it is not significant in the yy component.

• A substantial portion of this is carried by the pressure-velocity coupling

from the xx direction to the yy direction, which becomes the main source

term in the yy component.

• Both, the production term as well as the pressure-velocity term show a

clear decrease with increase in Mc

The high point of the thesis is related to using the understanding derived

from an analysis of various source terms in the kinetic energy balance to evolve

an unsteady Reynolds Averaged Navier Stokes (URANS) model for calculating

high speed mixing layers, a subject that has eluded international research till

now. It recognizes that the key feature affected by compressibility is related to

the anisotropy of the stress tensor. The relationship between stress component

(τxy) and the velocity gradient (Sxy) as obtained from LES is set out in the form

of a simple relationship accounting for the effects of other parameters obtained

earlier in this thesis. A minor influence due to τyy is extracted by describing its

dependence on Sxy again as gleaned from LES studies. The needed variation

of Prandtl and Schmidt numbers through the field is extracted. While the

detailed variations can in fact be taken into account in URANS simulations, a

simple assumption of these values being around 0.3 is chosen for the present

simulations of URANS. Introduction of these features into the momentum

equation gives the much expected variation of the reduction in the growth

rate of the mixing layer with convective Mach number as in experiments. The

relationships that can be used in high speed mixing layers are

τxy
ρ̄(∆U)2

=
Sxy

(∆U)/x

(
0.00294e(−6.756Mc)

)
τyy

ρ(∆U)2
= 0.02 +

0.03(
Mc + 0.01

0.25

)2

(
S2(S + 0.4)2

)0.125 ± 0.01
(
S2 − S4

)0.125

Where, S =
Sxy

30((∆U)/x)
, ρ̄ is the average density, and x the stream-wise

distance from the splitter plate.
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Introduction of these features into the momentum equation gives the much

expected variation of the reduction in the growth rate of the mixing layer

with convective Mach number as in experiments. This is then a suggested new

approach to solve high speed mixing layers.

While it can be thought that the principal contributions of the thesis are

complete here, an additional segment is presented related to entropy view of

the mixing layer. This study that considers the mixing layer with two different

species expresses various terms involved in the entropy conservation equation

and obtains the contribution of various terms on the entropy change for various

Mc. It is first verified that the entropy derived from the conservation equation

matches with those calculated from fluid properties, entropy being a state

variable. It is shown that irreversible diffusion comes down the most with

convective Mach number.
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List Of Symbols

Table 1: List of Symbols, Abbreviations and Conventions

Symbol Meaning

Directions

x Distance from the splitter plate along the stream-wise direction

y Distance from the splitter plate along the cross-wise direction

z Distance from the splitter plate along the span-wise direction

η Scaled cross-wise distance (y normalized with δ)

Subscripts

(·)1 Primary Stream

(·)2 Secondary Stream

(·)c Convective (eg. Uc, Mc)

(·),i Tensor notation derivative with respect to direction i

Operators

〈·〉 Ensemble average

·′ Fluctuating component after removal of average

{·} Favre average (density weighted average)

·′′ Fluctuating component after removal of Favre average

Symbols

t Time

p Pressure

T Temperature

ρ Density

U Velocity

h Enthalpy

h Internal energy

Ya Mass fraction of species a

s Entropy

Uavg Average velocity (U1 + U2)/2

Continued on next page
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Table 1 – Continued from previous page

Symbol Meaning

r Velocity ratio U2/U1

s Density ratio ρ2/ρ1

Mc Convective Mach Number (U1 − U2)/(a1 + a2)

γ Ratio of specific heats

µ Viscosity of the fluid

δ The width of the mixing layer

θ The momentum thickness of the mixing layer

δ′ Growth rate:variation of δ wrt x,

δ′0 Incompressible growth rate

∆U Difference in the velocities of the two streams

a Speed of sound

M Mach number

S Strain rate tensor

R Velocity correlation tensor

τ Turbulent shear stress tensor

νsgs Sub-grid scale viscosity

Σ Production tensor

π Pressure velocity correlation tensor

Non dimensional numbers

Re Reynolds number

Pr Prandtl number

Sc Schmidt number

Le Lewis number

St Strouhal number

Prt Turbulent Prandtl number

Sct Turbulent Schmidt number

Let Turbulent Lewis number
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Chapter 1

Introduction

1.1 Background

Nearly all civilian air travel over the last five decades has occurred at

speeds just below the speed of sound. The essential idea is to enable as high a

speed as possible with minimal overheads on fuel efficiency. Improving the ben-

efits perceived of air travel has occurred over the last several decades through

innovation in propulsion. This has resulted in the evolution of turbofan engines

with high bypass ratio to reduce the specific fuel consumption while ensuring

that the travel speeds are not compromised. The limitation for this travel speed

comes from the fact that the aircraft experiences sharp increase in drag due to

compressibility effects in which sonic speeds occur over parts of the wing (the

coefficient of drag increases sharply through sonic speed).

An exceptional effort made in an Anglo-French effort resulted in Con-

corde aircraft that would fly at twice the speed of sound (Mach number, M

of 2) at extremely high altitudes (20 km) to reduce drag influences as well as

undesirable effects of shockwaves on the ground, called sonic bang. The aim

of this effort was to cut-down by half the trans-atlantic air travel time of 6 to

7 hours by airliners currently in vogue. This provided attraction to business

executives in the initial stage. However, the operations became expensive and

the fare considered exhorbitant by most travellers. The primary reason for such

an eventuality is that the fuel consumption at supersonic speeds turns out to

be double of that at subsonic speeds. This aircraft operated commercially in

such a weak mode for several years that the operations were finally shut down.

An alternate thinking emerged in the early eighties in the USA. Moving
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from 900 km/h (the high subsonic speeds of civil airliners today) to 1800 km/h

(Concorde) appeared a small gain for whatever problems the fuel consumption

posed. Would it be possible to increase the civilian air travel speed to 12000

km/h (M ∼ 15)? If this proved difficult, at least to 8000 km/h (M ∼ 10)? This

led NASA to conceive of a project called National Aerospace Plane (NASP).

The project was politically “sold” as an exciting new technological approach to

ensure New York-to-Tokyo travel in less than two and a half hours. The propul-

sion system in this approach works vastly differently from those of subsonic

aircraft.

In gas turbine combustion chamber (in a turbofan), the fuel is injected

into an air stream at highly subsonic conditions. The airstream is at a M of

0.2 generally, 0.3 at most and a temperature of 450 to 500 K and a pressure of

10 to 30 atm (the compressor pressure ratios have improved over years from

20 to 40). All the heat released by combustion goes to raise the temperature

of the gases to 1700 to 1900 K and the hot gases move on to run the turbine.

In the case of NASP design, the flight Mach numbers of the order of 10 to

15 (more optimally close to 10) at extremely high altitudes (of 30 km and above

where the ambient pressures are less than 0.01 atm and static temperatures

of 220 K), the exit conditions achieved after flow diffusion from hypersonic

flight speeds through a suitably designed air intake are at M = 2 to 3, static

temperatures of 1400 to 1600 K and static pressures of 0.5 to 1 atm, the higher

temperatures and pressures being a consequence of compression through shock

wave systems through the forebody. The fact that static temperatures in such

a condition are not far from the combustion temperatures in a classical air-

breathing engine subsonic combustor that has a maximum peak temperature

of 2300 K, implied that further deceleration of the air stream to subsonic con-

ditions would be unhelpful in generating positive thrust from the propulsion

system. Building any practical combustion system at such flight conditions de-

mands that combustion be performed at supersonic conditions only. This new

regime of combustion has been the focus of examination experimentally, theo-

retically as well as computationally over the last three decades. Briefly stated,

the issues are that the residence time available for completing combustion is of

the order of a millisecond or less. This is coupled with low static pressures (0.1
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MPa or less) that makes chemical reaction rates low is only partly modulated

by higher static temperatures of air stream of 1200 K to 1500 K even if com-

bustion temperatures are about 2500 K. These conditions are vastly different

from those of a gas turbine main combustor where the residence times are

about 4 to 5 ms and pressures are very high as already indicated. The condi-

tions are also vastly different from rocket engine combustion chamber where

the reidence times are about a millisecond, but pressures and temperatures are

very high - 10 MPa and 3000 K.

The supersonic combustor that is limited to about a meter in length with

velocities of a 1000 m/s has issues related to mixing. The combustion process

must be conducted in a gradual manner rather than very sharply because the

sharp pressure rise will lead to the flow acquiring substantial regions of subsonic

flow that eventually leads to a strong coupling between the combustor and the

air intake. Such an intimate coupling is most undesirable since combustion will

largely be controlled by subsonic heat release causing unsteady flow processes

that may lead to the air intake going sub-critical, something that is disastrous

for thrust generation. Also the flow processes become unsteady. Avoidance of

such a coupling and achieving gradual combustion calls for mixing processes

to be designed with equal care since mixing precedes combustion. Studies of

mixing between high speed fuel and air streams (the subject of this thesis to

be detailed later) have shown that this process is impeded and controlled by a

parameter called convective Mach number Mc defined as the difference between

the stream speeds divided by the sum of the acoustic speeds of the two streams.

The period of early nineties was dominated by discussion of how to deal with

this bottleneck that appears only in high speed combustion processes. Even

though practical combustors use the configuration of laterally injected fuel jets

in streams, the early mixing phenomena in such a configuration is best modeled

by two-dimensional mixing layer to help unravel the physical processes involved

in controlling the mixing phenomena. Justifiably, mixing layers with different

velocities with similar gases have been studied extensively first. Subsequently,

the effects of different temperatures of the streams, densities and gases have

been treated through experiments and some simpler analyses like temporal

mixing layers and linear stability of spatial mixing layers. The development of

spatial mixing layers has still several questions that will be brought out in this
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thesis.

1.1.1 A brief history of scramjet development

A simple thermodynamic analysis of a ramjet propulsion system will lead

to
F

ṁaao
= Mo

[√
θb
θo
− 1

]
(1.1)

where F/ṁaao is the dimensionless thrust per unit air flow rate with ao be-

ing the acoustic speed at the flight altitude, Mo, the flight Mach number,

θb = Tb/To, the ratio of combustion chamber temperature to the ambient tem-

perature and θo = 1 + (γ − 1)M2
o , the ratio of stangnation temperature to

the static temperature expressed in terms of flight Mach number. For a given

ramjet engine, the thrust per unit flow rate which is reflective of the compact-

ness of the engine increases initially with flight Mach number, but eventually

will drop down because the first tem in the bracket comes down. This is be-

cause the stagnation temperature approaches the combustor temperature and

the system can no longer accept fuel energy. Typically, the peak in F
ṁaa0

is

obtained at Mo ∼ 2.5 to 3. Further, calculation of the thrust itself (dimension-

less thrust is F/poAe where po is the ambient pressure ad Ae is the exit area

of the nozzle designed for optimum expansion) has also a peak at a slightly

shifted flight Mach number. A further feature not accounted for in the above

analysis is that the aerodynamics that reflects itself in terms of drag since it

is the balance between the two that leads to steady, accelerated or decelerated

modes of functioning. The net effect after this is accounted is that subsonic

combustion based devices have an upper limit of operational flight speed not

far above 4 under the best circumstances.

The first major contribution in the realization of an engine based on su-

personic combustion appears in Ferri [1959] which discusses the practicality

of supersonic combustion (an example shown in Fig 1.1 ). The path break-

ing work was presented in Ferri et al. [1962], which presented experimental

attainment of combustion of coaxial stream of hydrogen (subsonic) jet in a

supersonic stream of air at M = 3 without the presence of shocks. Later, Ferri

and Fox [1969] described the design of scramjet engines, and provided an en-
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Figure 1.1: Combustor design with thermal compression.

[Image extracted from Ferri and Fox [1969]]

gineering approach to the study of mixing and boundary layer approximations

in such an engine. His designs were one of the first in trying to address the

problem of mixing. Heppenheimer [2007] has presented the detailed historical

perspective of the hypersonic research.

The NASA HREP (Hypersonic Research Engine Project) was initiated in

1964 for integrating the then available information into a complete engine. The

main aim was to demonstrate the thrust performance over a Mach range of 4

to 8. The last phase of the project was flight tests using the X-15 test airplane

which was cancelled in January 1968, which changed the focus of HREP to

mainly ground tests. A list of the documents generated is presented in Andrews

[1994]. The HREP generated a lot of information pertaining to ground tests.

The AIM (Aerothermodynamic Integration Model) designed and tested under

HREP was able to perform at about 70% the theoretical efficiency in the range

of Mach 5-7.

While the HREP concentrated mainly on axisymmetric engines, NASA

also researched in airframe integrated rectangular channel engines. Notably

John and Griffin [1973] and Edwards [1974] presented a configuration similar

to the one shown in Fig 1.2 and Fig 1.3.

Another project was that of Supersonic Combustion Ramjet Missile or

5



Figure 1.2: Body integrated scramjet airplane.

[Image extracted from John and Griffin [1973]]

Figure 1.3: Body integrated scramjet airplane.

[Image extracted from Edwards [1974]]

(SCRAM) detailed in Billig [1993] at the Johns Hopkins University. This

program was successfully able to complete the ground testing of engines in

the range M = 5-7.3. This program used a highly reactive fuel HiCal-3-D

(C3.2H20.3B10). On the basis of these experiments it was predicted that SCRAM

would have approximately twice the range of a rocket, and that it would also

outperform a subsonic combustion ramjet at hypersonic speeds because of its

higher fuel specific impulse.
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The year 1984 saw the start of the National Aerospace Plane (NASP) for

the development of the Single Stage To Orbit (SSTO) vehicle X-30. The aim

of the program under NASP was to develop a hydrogen fuelled scramjet engine

which would operate over the range of M = 4 to 15. In 1993 the proposed flight

experiments were cancelled after they were decided to be too expensive. The

NASP program was terminated in 1995. Following this, the Hyper-X program

to develop a vehicle to allow tests at speeds approaching Mach 10 was launched.

The X-43A research vehicle was designed to be the smallest flight vehicle that

could demonstrate scramjet performance. In 2004, X-43A demonstrated in two

separate flights, reached near Mach 7 and Mach 10 respectively [Harsha et al.,

2005].

Experimental work in Australia has over a period of time matured from

design and testing of simple combustors to the testing of scramjet models

demonstrating a net positive thrust. Hydrogen fuel is the main fuel candi-

date in most of the experiments in Australia. These efforts are recorded in

Paull et al. [1995]. The continued efforts resulted in HyShot program between

2001 and 2007, further leading to HyCAUSE from 2007 onwards. These flight

mainly based of a Ballistic trajectory, which include a portion of supersonic

combustion demonstrator with Hydrogen after reentry and reorientation.

Japan built a test facility at National Aerospace Laboratory,Kakuda Re-

search Center (NAL-KRC) for testing of supersonic combustion ramjet engines.

The Japanese research included those on fuel injection from side walls and par-

allel injection with and without using struts. Tests were conducted using shock

generators for isolating the effects of the combustion chamber from the inlet

to prevent un-start.

Sosounov [1993], Curran et al. [1996], Curran [2001] and others have pre-

sented insightful historical perspective of the development of scram jet engines

over the years.

1.2 Mixing and its role in Scram jet engines

Mixing is the precursor to combustion and mixing. The purpose of an

fuel injection system is to have an efficient distribution of the fuel in the flow
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field, which will lead to subsequent molecular mixing. As discussed earlier,

this has to happen at just the right rate for high efficiency. The mixing process

in supersonic combustion poses a central problem. The typical techniques of

injecting fuel in the air stream are

Cross injection through walls Fuel injection directly into the flow field

through the side walls. The obstruction caused by the incoming jet of

fuel into the supersonic stream of air, causes the formation of shock, and

subsequent mixing. Due to the total pressure losses to the shock and non

uniform distribution causes, this technique is seldom used.

Supersonic wake These are class of intrusive technique wherein a strut or a

pylon protrude into the flow field from the wall and deliver the fuel par-

allel or near parallel to the flow field at various locations. The supersonic

wake formation behind such structures provides the intense vorticity and

turbulence needed for rapid mixing as well as for flame holding.

Alternating ramps and wedges These provide alternating ramps to increase

the area of contact between the air and the fuel. The fuel is injected at

the end of the ramp and the contact surface includes all the three surfaces

of the ramp.

Figure 1.4: Few common injectors used in practice

Some of the common injectors design is shown in Fig 1.4. We see that the

techniques mentioned above involve streams of fuel and air mixing in the com-

bustion chamber due to shear and turbulence. A mixing layer of two parallel

streams is formed when the stream of fuel is from of a rectangular slit. Even in

8



the case where it is injected in the form of a jet, in the early part, the curvature

of the flow becomes insignificant compared to the other relevant dimensions

of the flow. The conditions from axial flows becomes a two dimensional flow

in this limit, and a supersonic coaxial jet degenerates to a two dimensional

mixing layer.

Thus the supersonic mixing layer is the most fundamental unit for the

study of mixing, and results from this can be extrapolated to most of the

mixing devices used in supersonic combustion.

1.3 The Mixing Layer

The mixing layer or more specifically, a plane two dimensional mixing

layer is basically two parallel streams at different velocities, initially separated

from each other by a splitter plate interacting beyond this region in the test

section leading to mixing (Fig 1.5). The planar mixing layer is the two di-

mensional analogue of a circular single jets and annular jets. This makes the

mixing layer the simplest approximation to the mixing of two parallel streams.

Figure 1.5: Model Mixing Layer

[Instability and consecutive roll up is depicted. Red color indicates primary stream, and

blue the secondary stream.]

Besides, the mixing layer being largely two dimensional, enables the

study of the same experimentally much more viable through shadow graphs or

Schlieren images.

1.3.1 The velocity profile

The initial velocity profile of the flow over the splitter plate is the same

as that of a boundary layer over a flat plate. Hence at the end of the splitter

plate the flow is composed of a double boundary layer profiles of either side

of the splitter plate. Of course, in a realistic experiment, boundary layers will
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form on the top and bottom walls of the channel and also in the span-wise

direction.

This initial profile immediately after the splitter plate forms a profile

which evens out the sharp changes due to the effect of viscosity. For the laminar

flow, the profile approaches a tanh profile but with a velocity deficit initially

caused due to the wake of the splitter plate and the boundary layer formed over

the splitter plate. As the distance increases, the wake component monotonically

decreases. As shown below

When the wake component becomes unidentifiable and the velocity profile

becomes almost a tanh profile, the average parameters become self-similar.

This is detailed in Sect 1.3.3. Very similar is the case when we talk of the

average velocity field of a turbulent flow.

1.3.2 The width of the mixing layer
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Figure 1.6: Definition of δ

[Notice that this definition of δ accommodates even flows without ( Left) and with

( Right) a deficit velocity ]

A measure of how much the momentum has diffused through the mixing
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layer is the width of the mixing layer. Broadly speaking, the width of the

mixing layer is the distance to which each stream feels the presence of the

other stream. One measure of the width of the mixing layer is the width where

the velocity has changed by more than say 10% of the difference in the free

stream velocities. This is shown in Fig 1.6.

Another definition of the mixing layer growth is called the vorticity thick-

ness shown in Fig 1.7. This measure is valid primarily for self-similar profiles,

with a single peak in the derivative of velocity. The width is defined as that dis-

tance which is required to cover the velocity difference at the greatest gradient

in the profile. It must be noted that this technique has the disadvantage that

it is not not valid in the early part of the mixing layer where there is a double

shear, because there are two peak derivatives, one positive and another nega-

tive. Also this technique has a drawback that it takes into consideration only

a single point information for the measurement. On the other hand, it does

not have any ambiguity as in the case of δ where the threshold is arbitrarily

chosen.

400 450 500 550 6003
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1
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2

3
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Usec

δω

Figure 1.7: Vorticity thickness

A third technique is aimed at arriving at a robust technique that over-

comes the local nature of other measurements. This technique involves fitting

a tanh profile on the mixing layer, with the best least squared fit, and using

that curve to determine the 10% deviations. This technique uses the entire in-
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formation of the flow velocity and is hence not susceptible to local fluctuations.

On the other, hand this technique needs a-priori the form of the velocity field

to be expected, and it does not work well with flows with velocity deficit.

A very important parameter is the growth rate which is the local rate of

increase of δ (x) with the stream-wise direction x. That is δ′ (x) ≡ dδ (x)/dx.

This parameter is of special interest because this parameter gives the rate

of diffusion of momentum, and from Reynold’s analogy, a measure of rate of

turbulent heat transfer and mass diffusion rate.

1.3.3 Self-Similarity

Self-similarity is a phenomenon in which the effect of two or more inde-

pendent parameters influences the dependent parameters only in a particular

combination. Hence that combination can be taken as a single independent

variable.

In the case of a mixing layer, when the cross-wise (y) coordinate axis is

scaled with the width of the mixing layer at that location, all velocity profiles

collapse into one curve. In fact with the definition

η = y/δ (x) (1.2)

all average parameters become a function of η alone and not that of x and y

separately. It can be said that the flow forgets the presence of the splitter plate

and loses equivalent to one independent parameter. It is also evident that the

velocity profile with a velocity deficit cannot be self-similar. This is clear from

Fig 1.8 where initially we can see the profiles as a function of x as well as η,

but after certain distance, it becomes a function of η alone.

In practice, however, the self-similarity is only an approximation because

of the presence of the side walls and the presence of the top and bottom walls.

The boundary layers growing on these surfaces eventually start influencing the

mixing layer and the flow parameters no longer are functions of η alone.

It must also be noted that there is an ambiguity as to where the self-

similarity has actually occurred. It may be said to have attained self-similarity
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Figure 1.8: Attainment of Self Similarity

[Stream-wise velocities collapse when y is scaled with δ]

when the average plots reasonably collapse on to a single curve. Further, once

the averages have attained self-similarity does not mean that the second order

statistics (like 〈u′u′〉) have attained self-similarity. In fact there is no simple

technique to estimate the distance required for the second order statistics to

attain self-similarity given the distance needed for the first order statistics to

attain self-similarity.

When self-similar, all the measures of mixing layer thickness are propor-

tional to each other and grow linearly with x. Hence the growth rate of each

of these measures differ by only fixed constants.

1.4 Research in Mixing, a literature survey

1.4.1 Experimental developments

Abramowitz [1963] in a monograph provided an appraisal of theoretical

and experimental data published over earlier ten years. It gives a systematic

analysis of numerous experimental data on velocity profiles, temperature, and

the impurity concentration. The theory of free turbulence in a gas, suitable in
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principle for any degree of compressibility, is revised, and the equations are

derived for motion and heat exchange in the boundary layer of a jet at very

high temperature. It also dealt with spreading of jets in finite and semi-finite

space. He derived the first relation for the growth rate of a mixing layer as

δ′ ∝ U1 − U2

U1 + U2

(1.3)

Where

δ(x) is the width of the mixing layer

δ′ ≡ dδ(x)/dx

U1 is the velocity of the primary stream

U2 is the velocity of the secondary stream

The above equation is easy to understand. In the frame of reference of the

instability, the only time scale is δ/∆U . Hence the rate of change of delta i.e.

dδ/dt must be proportional to ∆U . To transfer this to the stationary frame of

reference, if the convective velocity is Uc, we get

δ′ ≡ dδ

dx
=
dδ

dt

1

Uc
=

∆U

Uc
(1.4)

If we further assume that the convective velocity is the mean velocity,

which must be a very good estimate in the case of both the streams with the

same fluid density, we get

δ′ ∝ U1 − U2

U1 + U2
(1.5)

The above equation, however, is not valid for streams with dissimilar

densities. And, of course, it is meant only for incompressible mixing layer.

By the beginning of 1970s it was known that increase in the Mach num-

ber causes the decrease in the growth, or the spread of supersonic jets. This

was generally attributed to the decreasing temperature with increased Mach

number in experimental studies and hence the increasing density of the stream.
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Figure 1.9: Shadow graph sample from Brown and Roshko [1974]

[Notice the well formed coherent large scale structures]

To verify this claim and to see the effects of density variation, Brown

and Roshko [1974] conducted experiments with a mixing layer (subsonic) with

different gases to be able to have a density ratio significantly different from

unity and thus emulate the effects of varying density ratio related to the in-

creasing Mach number in other experiments. The test cases for the verification

is presented in Table 1.1. These test cases were selected to be able to emulate

the effects of differing density ratios in cases where the Mach number of the

primary stream would be up to 5. The experiment demonstrated present of

span-wise structures, as shown in Fig 1.9.

The results of these experiments (presented in Fig 1.10) clearly showed

that although the increasing density ratio does decrease the mixing layer

growth rate, the decrease caused in the experiments when the Mc is increased

is much more than what is expected solely due to the density ratio change. It

was hence concluded that the density ratio alone does not explain the reduced

growth of the mixing layer at high Mach numbers.

The reduced growth rate was again observed and presented by Ikawa

and Kubota [1975]. This experiment, with the primary stream Mach number

as 2.47, found that there is a reduction in the mixing process, growth rate,

normalized shear stress, and other measures of turbulence. Comparison was

made with an incompressible mixing layer, and the reduction of growth rate

was found to be from 0.035 in the case of incompressible mixing layer, to 0.0073

in the case of a compressible mixing layer.

To be able to make predictions regarding the compressible mixing layers,

it was necessary to have a measure of the compressibility effects. To this end
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Parameter Case 1 Case 2 Case 3
Primary Secondary Primary Secondary Primary Secondary

Fluid Helium Nitrogen Nitrogen Air Nitrogen Helium
Velocity [m/s] 5 1.9 5 1.9 5 1.9

Pressure[atm] 4 4 4
Density Ratio 7 ≈ 1 1/7

Velocity Ratio ≈ 1/
√

7 ≈ 1/
√

7 ≈ 1/
√

7

ρU2 Ratio ≈ 1 ≈ 1/7 ≈ 1/49
λ ≡ U1−U2

U1+U2
0.45 0.45 0.45

Parameter Case 4 Case 5 Case 6
Primary Secondary Primary Secondary Primary Secondary

Fluid Helium Nitrogen Nitrogen Air Nitrogen Helium
Pressure[atm] 4 4 4
Density Ratio 7 ≈ 1 1/7
Velocity Ratio ≈ 7 ≈ 7 ≈ 7

ρU2 Ratio ≈ 343 ≈ 49 ≈ 7
λ ≡ U1−U2

U1+U2
0.75 0.75 0.75

Table 1.1: Test cases of Brown and Roshko [1974]

Bogdanoff [1983] presented a measure M+. This is the geometric mean of

the two Mach numbers that the frame moving with the coherent structures

see, Mc1 and Mc2. The results of this study were compared with the analysis

of Blumen et al. [1975], and were found to be corroborating with the linear

stability results. This comparison is shown in Fig 1.11.

Now that it was certain that the effect of the growth rate reduction was

not solely due to the density or the velocity ratio, but was a compressibility

effect, there was a need for a systematic characterization of the effect based

on experimental evidence and quantification of its effect. This was done by

Papamoschou and Roshko [1988] who experimentally investigated the growth

rate and the turbulence structure of supersonic mixing layers with similar and

dissimilar gasses. The experiments performed ranged from Mach numbers from

0.2 to 3.4. The Schlieren images and the details are shown in Fig 1.12 to enable
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Figure 1.10: Effect of density ratio on spreading rate

[Image extracted from Brown and Roshko [1974]. Symbols: • represents the

incompressible case and experiments: 4, Ikawa [1973];+, Maydew and Reed [1963]; ×,

Sirieix and Solignac [1966]. Note that the decrease in the growth rate is much smaller

due to density variations than what is caused due to increased Mc]

further analysis of the behavior of the mixing layers.

It can be seen that the images of the experiments reveal very low growth

rates and presence of large scale structures. To quantify the compressibility ef-

fect, the authors introduced a compressibility parameter which would unify all

the results obtained. This parameter which was the Mach number convecting

with the velocities of the structures, came to be known as the convective Mach

numbers (plural indicates the two numbers, one with respect to each stream).

To be able to calculate the convective Mach number, it was necessary to cal-

culate the velocity of the convecting structures. For this the authors matched

the total pressures from both the streams in the convecting frame of reference.

This gives

(
1 +

γ1 − 1

2
Mc

2
1

) γ1

γ1 − 1 =

(
1 +

γ2 − 1

2
Mc

2
2

) γ2

γ2 − 1 (1.6)

This relation is plotted in Fig 1.13, which shows that for moderate Mc1
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Figure 1.11: The Mach number M+

[Image extracted from Bogdanoff [1983]. • represents experimental values, and curves

represent maximum inviscid instability amplification rates]

the difference in Mc1 and Mc2 is less than 9%. This may not hold true for

large Mcs. Since the difference between the two convective Mach numbers is

not large, the definition of the term “convective Mach number” (Mc) changed

in most of the later papers, which used the single mean value Mc =
U1 − U2

a1 + a2

.

For γ1 = γ2, Mc1 = Mc2, Eqn 1.6 yields

Uc =
a2U1 + a1U2

a1 + a2

(1.7)

The next thing was to isolate the effects of compressibility. For this it

was assumed that the effect of compressibility will be in the variable separable

form. That is, they assumed

δ′ = δ′0(r, s)︸ ︷︷ ︸
incompressible effects

× f(Mc1)︸ ︷︷ ︸
compressibility effects

(1.8)

Papamoschou and Roshko [1988] then modelled the incompressible growth

rate for various density ratios (s) and velocity ratios (r) from the data of Brown
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C
as
e
1 Fluid U [m/s] ρ[kg/m3] M Mc r s

N2 459.41 0.12 1.60
0.08 0.9291 4.37

Ar 494.73 0.52 3.30

C
as
e
3 Fluid U [m/s] ρ[kg/m3] M Mc r s

N2 640.33 0.23 3.10
0.33 0.75 0.54

N2 477.81 0.12 1.70

C
as
e
4 Fluid U [m/s] ρ[kg/m3] M Mc r s

N2 616.94 0.20 2.80
0.38 0.75 1.81

Ar 465.00 0.36 2.60

C
as
e
6 Fluid U [m/s] ρ[kg/m3] M Mc r s

He 1236.43 0.02 1.70
0.64 0.51 9.98

N2 633.03 0.22 3.00

C
as
e
7 Fluid U [m/s] ρ[kg/m3] M Mc r s

Ar 487.76 0.47 3.10
0.89 0.13 0.24

Ar 64.09 0.11 0.20

C
as
e
8 Fluid U [m/s] ρ[kg/m3] M Mc r s

He 1469.02 0.04 2.60
1.08 0.42 5.52

N2 616.94 0.20 2.80

C
as
e
9 Fluid U [m/s] ρ[kg/m3] M Mc r s

He 1572.82 0.05 3.40
1.49 0.29 2.18

N2 459.41 0.12 1.60

Figure 1.12: Schlieren sample from Papamoschou and Roshko [1988]

and Roshko [1974], as

δ′0 = 0.14
(1− r)

(
1 + s1/2

)
1 + rs1/2

(1.9)

Using the definition of Mc1, and using a model for the growth rate, it

was scaled with the incompressible growth rate for the same s and r as that

of the compressible counterpart and the effect of compressibility so obtained

is shown in Fig 1.14. It is seen that all the points, more or less fall on the

same curve which shows insignificant decrease till Mc ≈ 0.3 and then decreases

with increase in Mc to an asymptotic value of about 0.2 at about Mc ≈ 0.75.

Identification of Mc as a measure of compressibility was one of the important

contributions of Papamoschou and Roshko [1988]. This measure of compress-
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Figure 1.13: Convective Mach numbers

[Notice that the difference between Mc1 and Mc2 for Mc1 < 2.5 is less than 9%]

ibility differs from the one presented by Bogdanoff [1983] (the latter is the

geometric mean of the two Mach numbers Mc1 and Mc2 ).

Figure 1.14: Scaled growth rate from pitot measurements vs Mc

[Image extracted from Papamoschou and Roshko [1988]]
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The schlieren images are examined further here. The Schlieren image also

represents an average in the span-wise direction. Being so the envelope of the

fringes of the Schlieren images is indicative of the average growth δ of the

mixing layer at that point. This δ was measured directly from the images

present in Papamoschou and Roshko [1988]. This plot is shown in Fig 1.15.

The left of the images has the plot of the measured δ, and the right one is scaled

to counter the effects of r and s. It can be seen that increase in Mc almost

monotonically decreases the scaled δ and this effect is the compressibility effect.

0 50 100 150 200 250
x[mm]

1

2

3

4

5

6

7

8

δ[
m
m

]

Mc = 0.07, r = 0.93, s = 4.37

Mc = 0.33, r = 0.75, s = 0.54

Mc = 0.64, r = 0.51, s = 9.98

Mc = 0.89, r = 0.13, s = 0.24

Mc = 1.08, r = 0.42, s = 5.52

Mc = 1.49, r = 0.29, s = 2.18

0 50 100 150 200 250
x[mm]

0

20

40

60

80

100

120

140

160

δ/
F

(r
,s

)

Mc = 0.07, r = 0.93, s = 4.37

Mc = 0.33, r = 0.75, s = 0.54

Mc = 0.64, r = 0.51, s = 9.98

Mc = 0.89, r = 0.13, s = 0.24

Mc = 1.08, r = 0.42, s = 5.52

Mc = 1.49, r = 0.29, s = 2.18

Figure 1.15: Measured δ (left) and scaled to remove effect of r and s (right)

[Note that the scaled δ shows a distinct decrease with Mc for a given x]

The following are some observations that can be made from Fig 1.15.

• The decrease in the scaled growth rate is monotonic with increase in Mc.

• The influence of the incompressible effects is large and can actually offset

the influence of Mc. For example Mc of 0.64 has a greater growth than

Mc of 0.3 because r increased from 0.51 to 0.75 for the same two cases.

• The growth is not very linear, especially with increasing Mc. This further

means that self-similarity may not have been attained even in the first

order statistics, because self-similarity would imply a constant growth

rate.

The experiments prior to the 90’s could use only Schlieren images as

the visualization technique. These could, at best, guess the three dimensional
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structures. However, the beginning of the 90’s saw the advent of better visual-

ization techniques. Planar Mie Scattering was one such technique, which was

employed by Clemens and Mungal [1990], for the direct visualization of the

three dimensional structures. Clemens and Mungal [1990] performed experi-

ments of mixing with Air-Argon supersonic streams at the conditions shown

in Table 1.2.

Parameter Case 1 Case 2 Case 3
Primary Secondary Primary Secondary Primary Secondary

Fluid Air Air Air Air Air Argon
Mach Number 1.64 0.91 1.97 0.42 2.15 0.38
Velocity [m/s] 430 275 480 130 508 110
Total Temperature [K] 265 260 265 260 265 260
ρ [kg/m3] 2.04 1.58 2.35 1.40 2.59 1.96
T [K] 172.8 222.3 150.1 251.6 136.3 248.4

Density Ratio 0.77 0.59 0.77
Velocity Ratio 0.63 0.28 0.22
Mc1 0.29 0.62 0.79
Mc2 0.29 0.62 0.73
Mc 0.29 0.62 0.75

Table 1.2: Test cases of Clemens and Mungal [1990]

A part of their work was the comparison of the average velocity profiles for

comparison with the previous growth rate measurements. This was presented

in the background of the results of Papamoschou and Roshko [1988] (shown

in Fig 1.16), indicating that the compressibility parameter Mc introduced by

the latter held true.

A major part of the work, however, was the visualizations of the turbu-

lence structures using planar Mie scattering. The imaging were done with two

techniques, product formation (where ethanol vapour in warmer slow speed

stream condenses and becomes visible when it in contact with cold high speed

stream), and passive scalar (where the high speed stream is seeded with vapour

which condenses into fog in the nozzle). Some of the results are shown in

Fig 1.17. The experiments showed that the low Mc cases indicate to the regu-

lar two dimensional coherent structures, whereas for high Mc cases, the mixing

layer becomes highly three dimensional. Low Mc cases show the formation of

fat braids, which are almost absent in the high Mc cases. Also the presence of
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Figure 1.16: Results of Clemens and Mungal [1990] compared with Papamoschou
and Roshko [1988]

[Figure extracted from Clemens and Mungal [1990]. ◦ represents results of

Papamoschou and Roshko [1988] and • represents results of Clemens and Mungal

[1990] with error bars.]

dark streamwise streaks in the high Mc flows, which are not present in the low

Mc flows suggests the presence of streamwise vortical structures. Furthermore,

they reported that this structure carries predominantly the low stream fluid

and does not cause entrainment.

The velocity measurements in all these experiments were made usually

using pitot static tube or hot wire anemometer. Also, the run times of the

experimental setup were small due to the limitation of pressurized bottled

gasses. Messersmith et al. [1988] presented the experimental facility for study-

ing supersonic mixing layers with long run times. Also a precise measurement

technique, Planar Laser Doppler Velocimeter (PLDV) was used to make the

measurements of the velocity field. Whereas Messersmith et al. [1988] presented

the case Mc=0.2, Goebel and Dutton [1990a] and Goebel and Dutton [1990b]

provided experimental results on the same setup with many test cases. The

setup also had the facility for Schlieren images and pressure measurements.

The PLDV measurements allowed for measurements of turbulence in-
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Figure 1.17: Mie scattering images from Clemens and Mungal [1990]

[Side View (Left), Top View (Center) and End View (Right) of flows at

Mc = 0.28(Top), Mc = 0.62(Middle) and Mc = 0.79(Bottom) from Clemens and

Mungal [1990] ]

tensities along with the mean velocity profiles. The cases had relative Mach

numbers ranging from 0.4 to 1.97.

The results of this case is presented in Fig 1.18 where it can be seen that

1. σv (≡ 〈v′v′〉) shows a distinct reduction with Mc.

2. σu (≡ 〈u′u′〉) shows no particular trend with increasing Mc.

3. The shear stress shows reduction with increasing Mc.

4. The anisotropy, which is the ratio of the turbulent stresses in stream-wise

direction to the cross-wise direction, increases with increase in Mc.

Besides, it was observed from Schlieren pictures that organized struc-

tures were not present. This was in contrast to the observations made by Pa-

pamoschou and Roshko [1988] who stated that the large scale structures were

present. Such large scale structures were also clearly demonstrated in the work
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Figure 1.18: Stress tensor components from the experiments of Goebel and Dutton
[1990b]

[Plotted above are the σxx(ux
′, ux

′) correlation (top left), the σyy(uy
′, uy

′) correlation

(top-right), σxy(ux
′, uy

′) velocity correlation (bottom left) and the ratio of σu and

σv(bottom right). It can be seen that 〈u′u′〉 does not show much of a trend, 〈v′v′〉
does show a clear trend of decreasing magnitude with Mc]

of Clemens and Mungal [1990] and Elliott and Samimy [1990]. The present

work also confirms the presence of such structures.

Also, through a set of experiments, the authors claimed that higher level

of free stream turbulence and shock waves apparently inhibited development.
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Around the same time as Goebel and Dutton [1990a], a similar setup was made

at Ohio state university, and the observations were presented in Samimy and

Elliott [1990] and Elliott and Samimy [1990]. The test cases were of high speed

flows with Mc values 0.51, 0.64 and 0.86. A two component LDV was used for

velocity measurements.

Figure 1.19: Results from Samimy and Elliott [1990]

[Plotted above are the σxx(ux
′, ux

′) correlation (top left), the σyy(uy
′, uy

′) correlation

(top-right), ux
′, uy

′ velocity correlation (bottom left) and σu and σv with respect to

Mc(bottom right). In these plots 4 is Mc = 0 + is Mc = 0.88, ? is Mc = 0.64 and �
is Mc = 0.51 for the top plots and the bottom left]

The results showed that for the lower convective Mach number case, the

vorticity thickness growth rates were over 20% higher and the momentum

thickness growth rate was over 30% higher than those of the higher convective

Mach number case. The lateral turbulence intensity, shear stress, and lateral

transport of kinetic energy were all non-dimensionalized, with the velocity

difference across the shear layer. These were plotted against the normalized y

coordinate, shown in Fig 1.19. It can be seen that these show reduced levels

for the higher convective Mach number case. It must be noted that this is in
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contrast with the reports of Goebel and Dutton [1990a], with respect to the

transverse and the shear components, which show no particular trend with

increasing Mc for these components. Also the reduction in the case of the

stream-wise fluctuations with respect to the incompressible values was found

to be much less than in the case of the cross-wise or the shear components,

which show a significant decrease.

It was also seen by the authors that the normalized turbulent quantities

do not become self-similar even in the regions where the velocity profiles be-

come self-similar. This, using analogy to the analysis of Lumley [1986], was

explained as due to the fourth order fluctuations which have a large influence

over the mean turbulent quantities. If the turbulent shear were to be back-

calculated from the mean velocity profiles, using eddy-viscosity hypothesis,

they would obviously be self-similar (and were shown to be so by Samimy and

Elliott [1990]), and was hence argued by Lumley [1986] that the eddy viscosity

certainly cannot describe the evolution of the shear layer.

An interesting viewpoint of the mixing layer is from the aspect of fre-

quency measurement. Frequency measurement of the perturbation gives a pic-

ture of the presence of coherent waves and an idea size of structures. This was

done by Demetriades and Brower [1990] who presented the experimental anal-

ysis of laminar flow profiles in high speed shear layers, intensity and frequency

of the fluctuations in laminar flow. Two test cases were selected with stream

Mach numbers M1 = 2.9, M2 = 2.29 and M1 = 2.76, M2 = 1.87. Both streams

were of Air. The RMS of the fluctuations measured is shown in Fig 1.21

Figure 1.20 shows the development of the free shear layer (FSL) and

the development of the boundary layers (BL) with the stream-wise direction.

It is seen from Fig 1.20 that for about 200 momentum thicknesses (θ) of

high speed stream equivalent of length, there is a relative quiescent region.

After that there is a region of approximately the same distance of intensified

instability. The observations are summarized in Table 1.3. It is apparent from

the measurements that the increase in Mc has actually decreased the distance

where the amplifications occur, however it must be pointed out that the two

streams do not have the same r or s. Hence an isolated statement regarding

stability depending on Mc alone cannot be made.
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Figure 1.20: Growth of the mixing layer from Demetriades and Brower [1990]

[It is seen that there is an initial quiescent region after which the growth starts.]

Parameter Config III Config IV
Primary Secondary Primary Secondary

Fluid Air Air Air Air
Mach Number 2.9 2.29 2.76 1.87
Velocity [m/s] 653 583 627 514

Velocity Ratio (r) 0.89 0.82
Density Ratio (s) 0.94 0.909
Mc 0.145 0.225

S
ta

rt
o

f
g

ro
w

th from δ measurement[cm] 4.6 3.8
from Schlieren images[cm] 5.8 3.8
from RMS measurement[cm] 5.1 1.8
from Spectrum[cm] 4.4 2.5
from 170[kHz] frequency measurement[cm] 5.7 4.6
Average[cm] 5.1 3.3

Table 1.3: Test cases and transition distance of the cases of Demetriades and Brower
[1990]

This instability was measured in their setup to be around 120[kHz]. After

this it is reported that the intensity of the instability decreases, the spectrum

disperses, and flow width increases. The initial instability develops due to

Kelvin Helmholtz instability, which occurs at a certain frequency, which in the
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Figure 1.21: Frequency measurements from Demetriades and Brower [1990]

[Note the instability developing at about 120[kHz] and gradually spreading ]

present case happens at 120[kHz]. This frequency for a characteristic velocity

of 113[m/s] (the difference in the stream velocities) and a characteristic length

of from 0.3[mm] where frequency is around 120[Hz] has a Strouhal Number

of St = fL/V ≈ 120×103·0.3×10−3

113
= 0.318 . However, with process of growth of

the structures and their merging, the frequency decreases and the bandwidth

increases. It is estimated that 1000 θ distance is required to be able to attain

completely random flows.

The above results tend to indicate that the beginning of growth is actually

earlier in the case of higher Mc, however, the two cases are not at the same ve-

locity ratio, and are not very far apart in Mc too. Hence, no generalization may

be possible. However, the frequency distribution, and the intensity measure-

ments of the velocity fluctuations at various locations is of value. The pattern

indicates that the evolution of the flow first starts as a band limited instability

which grows and becomes more and more broad banded with evolution.
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All experiments till this point had the density ratio close to unity, at

least not far from unity. So as to validate if the observations at usual labora-

tory conditions hold for conditions far from unity, Erdos et al. [1992] carried

out experiments with mixing layers at hypervelocity conditions with different

gasses, and Mc of 0.8 and 2.8.

Case N2/N2 H2/N2 H2/Air H2O
Stream Primary Secondary Primary Secondary Primary Secondary Primary Secondary

Species N2 N2 N2 H2 Air H2 O2 H2

U [m/s] 3807 640 3807 2387 3810 2387 3805 2387
T [K] 2444 102 2444 103 2443 103 2398 103
M 3.93 3.12 3.93 3.05 4.00 3.05 4.27 3.05
p[Pa] 21373 21373 21373 21373

Mc 2.70 0.81 0.82 0.85
r 0.17 0.63 0.63 0.63
s 24.04 1.70 1.65 1.46

Table 1.4: Test cases of Erdos et al. [1992]

The different test cases of Erdos et al. [1992] are presented in Table 1.4.

The test conditions were chosen by them to be able to demonstrate the effect

of high Mc and the effect of heat release. Laser holographic interferometer

(LHI) was used to study the initial development. A typical case of H2/N2 case

is shown in Fig 1.22 which shows a distinct and a preferential growth on the

secondary side of the stream.

Figure 1.22: Image of LHI from Erdos et al. [1992]

[Note the asymmetric growth towards the secondary stream]

The instrumentation of the experiment carried pressure transducers and

heat flux measurement devices on the top and the bottom walls. These mea-

30



surements, an example of which is show in Fig 1.23, indicate again a pro-

nounced asymmetry in the heat transfer, but in a direction opposite to that

of the visual growth. The heat transfer happens to the wall much later on the

side of secondary stream than on the side of the primary stream.

Figure 1.23: Heat flux measurements from the measurements of Erdos et al. [1992]

[1[BTU/(in2s)] ≈ 1.635[MW/m2]]

Miller et al. [1993] studied the structure of a plane mixing layer between

a supersonic, high-temperature, oxidizing stream and a subsonic, ambient-

temperature, hydrogen-containing stream under compressible conditions and

with low heat release. Visualization was done with OH/acetone PLIF (Pla-

nar Laser Induced Fluorescence). The structural features of the flow were pre-

sented. Subsequently, Miller et al. [1994] presented results where the increasing

three dimensionality of the flow with increase in the Mc is demonstrated. Also

the entrainment rates were investigated and it is shown that the entrainment

ratio is closer to unity unlike in a incompressible mixing layer.

1.4.2 Theoretical and computational developments

Approximations and extensions to the incompressible mixing layer

The earliest approximations to predict the behaviour were presented by Favre

[1964] who presented the Markovin hypothesis. This states that for boundary

layers and wakes with free stream Mach numbers up to 5, and jets with Mach
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numbers up to 1.5, turbulence structures are close to the constant density

flows, and the density fluctuations can be neglected. This was later modified

by Bradshaw [1977] who reviewed Markovin hypothesis and substantiated the

claims for boundary layers, free shear flows and duct flows. Citing the work

of Papamoschou and Roshko [1988], it is stated that the density ratio plays

a minimal role in determining the spread rate of a compressible mixing layer.

Further, the paper claimed that, the breakdown of the Markovin hypothesis

happens primarily due to pressure fluctuations and not due to density fluctua-

tions. This article also has provided information on the skin friction coefficient,

the correlation coefficients, and the spectrum shapes for different flows.

The implicit presence of the density term in the conservation equation

makes the equations extremely unwieldy when the usual (Reynold’s) averaging

is used. Instead as Favre [1971] introduced, considerable simplification of the

equations can be obtained if the averages of properties are density weighted.

This removes the density fluctuations from the conservation equations. How-

ever the physical meaning of Favre average was unclear, and was considered

to be an approximation to the Reynold’s average. Laufer (see Birch et al.

[1972]), however, reasoned that the pitot-static measurements of the flows are

in fact the Favre averaged quantities rather than the conventional averages,

thus giving a physical meaning to the Favre average.

An early attempt to predict the growth rate of the incompressible mixing

layer, was made by Abramowich. However, as mentioned before, this did not

consider the density differences. To be able to delineate the incompressible

effects and the compressible effects, it was necessary to have a model for the

incompressible growth rate at different density ratios. Dimotakis [1986] using

simple arguments based on the geometrical properties of the large-scale flow

structures derived expressions for the growth of two dimensional incompressible

turbulent mixing layer. Konrad [1977] provided measurements of entrainment

of different gasses for a mixing layer. Based on this, the author found that that

the entrainment is approximately of the form

Ev(r, s) = s1/2f(r) (1.10)
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Where

s ≡ ρ2

ρ1

and r ≡ U2

U1

It must be noted that the entrainment rates were investigated by Di-

motakis [1986] experimentally had shown that the entrainment ratio is closer

to unity unlike in a incompressible mixing layer, which is different from the

assumption made here.

Assuming that in the frame of reference of the vortices, the entrainment

velocities (vix where x is 1 for primary stream and 2 for secondary stream)

would be a function of the respective characteristic velocity, it was proposed

that

−vi1
U1 − Uc

=
vi2

Uc − U2

= ε(r, s) =⇒ −vi1
vi2

=
1− rc
rc − r

where rc ≡
Uc
U1

(1.11)

Next assuming the match of the dynamic pressures, rc was estimated to be

rc(r, s) =
1 + rs1/2

1 + s1/2
(1.12)

Assuming a geometric progression for the position of the vortices, that

is xn+1 = (1 + l/x)xn, and extrapolating from the available incompressible

results, it was found that
l

x
= 0.68

1− r
1 + r

(1.13)

The product of the rate of growth of mixing layer and the distance between

the adjacent vortices must be equal to the total entrainment volume. Thus

An
t

=
1

2
δn (xn+1 − xn−1) = ε (U1 − Uc) (xn+1 − xn) + ε (Uc − U2) (xn − xn−1)

(1.14)

Simplifying this, and substituting the values of rc,
x
l

and ε and transforming

the equations to the frame of reference of the splitter plate, one arrives at

dδ

dx
= ε

(
1− r

1 + s1/2r

)1 + s1/2 − 1− s1/2

1 + 2.9

(
1 + r

1− r

)
 (1.15)
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These predictions were shown, by the author to be in good agreement

with measurements till then. At first, the equation 1.15 which depends on the

velocity ratio and the density ratio alone, and not on the average velocity may

seem surprising. The point to be noted in the derivation is that the rate of

entrainment is directly proportional to the velocity, hence, canceling out the

effect of the average velocity. This latter assumption is central to the growth

rate equation.

For compressible turbulent mixing layers, the growth rate is assumed to

be formed out of two effects, the incompressible effects, which accounts for

the velocity ratio and the density ratio and the compressibility effects. Eqn

1.15 is very often used in literature to provide a model for the incompressible

effects.

Causes for reduced mixing layer growth rate with increased Mc

The reasoning behind the decreasing growth rates with increasing Mach num-

ber has been a topic of research for quite some time. Many researchers have

approached the problem from the instability point of view.

The average velocity profile of the mixing layer is close to the tanh profile

(in the case of a spatial mixing layer this state is reached at a distance of about

1000× momentum thickness (θ) as investigated by Demetriades and Brower

[1990] ). The flow profile, and the derivatives are shown in Fig 1.24.

It can be seen from Fig 1.24(c) that the velocity profile has an inflection

point, and hence satisfies the Rayleigh [1879] criteria for instability . Further

it can be seen from Fig 1.24(d) that Fjørtoft’s criteria ( Fjortoft [1950] ) that
∂2U

∂y2
(U −UI) must be negative at some point in the flow field, is also satisfied.

These are necessary conditions for instability (though not sufficient). Hence

a mixing layer becomes a strong candidate for instability. In fact the mixing

layer undergoes the well known Kelvin Helmholtz instability.

Blumen [1970] extended the Rayleigh stability criterion and Howards

semi-circle theorem to compressible flows. A subsonic neutral solution of the
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Figure 1.24: Instability Criteria

[The velocity profile(a), the derivative of the velocity profile(b), the second

derivative(c) and (U − U(0))× the second derivative(d)]

stability equation was found for the hyperbolic-tangent velocity profile. With

this he presented the unstable eigenvalues, eigenfunctions and Reynolds stresses

by numerical methods. Blumen et al. [1975] describes the presence of a second

supersonic mode. Blumen used a hyperbolic tangent profile as the base flow

and a constant temperature fluid for the analysis. He showed that that the

hyperbolic tangent profile is unstable for any value of Mach number, however

large. The second mode occurs only at Mach number greater than 1. However,
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the amplification factor of this mode was shown to be one order less than the

first mode. Later Drazin and Davey [1977] augmented the findings of Blumen

et al. [1975] and presented a third mode of instability.

In addition to the contribution of Bogdanoff [1983] to the definition of

convective Mach number M+, he compared the results of the experiments

with linear stability analysis and argued that the reduction in the growth

rates at high convective Mach numbers is strongly coupled to the reduction

in the amplification rates of the most unstable Kelvin-Helmholtz instability

waves. He suggested that linear stability theory as an important tool for the

understanding the reduced growth rate phenomenon. On these lines, Sandham

and Reynolds [1989] performed linear stability analysis of small perturbations

for the compressible mixing layer. The perturbations used by the author were

of Blassius type laminar profile. The author compared the results with two and

three dimensional temporal mixing layers. It was further shown by the author

(see Fig 1.25) that the amplification rate of the most unstable wave decreases

with Mc. They also showed that below Mc of about 0.6, two dimensional modes

are more unstable than the three dimensional modes.

Figure 1.25: Temporal mixing layer amplification rates at differentMc from Sandham
and Reynolds [1989]

Parallel to the linear stability approach, Papamoschou [1990] offered a

physical explanation to the stabilizing effects of compressibility in shear layers.

His line of argument was related to the region of influence of a perturbation

in the field of supersonic mixing layer. Assuming that the wavelength of the
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disturbance is smaller than the characteristic dimension of the mixing layer,

he calculated the radiation propagation of acoustic disturbances from a sender

plane to a receiver plane, in the base field of averaged mixing layer, shown

in Fig 1.26. By calculating the tubes of radiation, he made estimates of the

energy reaching the receiver plane from the sender plane. He suggested that

the compressibility distorts the rays from an acoustic source. This causes a

hindrance in the communication of disturbances providing an inherent stability

to the mixing layer.

Figure 1.26: Ray diagrams from Papamoschou [1990]

[Notice that the rays become skewed as M1 increases]

Later Papamoschou [1993] presented a quasi one-dimensional model for

planar shear layer and estimated the total pressure loss due to turbulent mix-

ing. Entropy production was found to be strongly coupled to the compressibil-

ity, and total pressure losses become significant with Mc increasing beyond 1.

This work was extended by Zhuang and Dimotakis [1995]. They extended

the linear stability analysis for wake dominated flows, as in the case of a

realistic spatial mixing layer. They performed the linear stability on flows

with varying degrees of wake, and found that the presence of wake has a large

influence on the mixing layer. They observed that the two dimensional modes

are more dominant in the case of flows with wake. Further, a greater wake

component can produce a larger amplification rates. A remarkable result was

that the amplification rate of a flow with wake, does not decrease monotonically

with increase in the Mc, unlike flows with no wake component.

The advent of digital computers, and development of the field of Compu-

tational Fluid Dynamics gave rise to the possibility of numerical simulations

of the mixing layer. However the initial attempts using RANS computations

failed to capture the reduced growth rate effect. Launder et al. [1972] com-
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pared the various turbulent models and showed that the RANS computations

over predict the growth rate of the mixing layer.

Vreman [1995] presented Large Eddy and Direct Simulations of a temporal

mixing layer and Vreman et al. [1996] presented the direct numerical simulation

of a temporal mixing layer of Mc ranging from 0.2 to 1.2. The study showed the

presence of two dimensional structures up to a Mc of 0.6, and oblique modes

beyond Mc of 0.8.

One of the most important contributions of this work was the demonstra-

tion of the insignificance of dilatation dissipation and a demonstration that

turbulence models based on the dilatation dissipation do not work for shear

flows especially beyond a Mc of 0.3. It was shown that compressibility affects

the production terms much more than the dissipation. By performing inte-

grated analysis of the statistics of the flow, it was shown that the pressure

strain term is responsible for the reduction in the growth rate.

Increase in the available computational power over the years paved way for

the possibility of Direct Numerical Simulation of the flow, though not nearly

so for a full spatial mixing layer, but for a homogeneous shear flow. One of the

first contributions in the direction of the DNS of homogeneous mixing layer

was by Sarkar et al. [1991b] who showed the importance of the compressible

dissipation.

The authors claimed that the turbulence Mach number defined as

Mt ≡
q

〈c〉
where q2 = 2× T.K.E. (〈u′iu′i〉) , and

〈c〉 is local average mean sonic speed
(1.16)

was expected to be a better measure of the compressibility effect, and

showed through DNS of homogeneous turbulent flows that the compressible

dissipation is directly related to Mt. The compressible dissipation arises out of

the turbulent dissipation term
〈
σij
′ui,j

′〉 which can be written for compressible

isotropic turbulence as

〈
σij
′ui,j

′〉 = 〈µ〉 〈ωi′ωi′〉︸ ︷︷ ︸
〈ρ〉εs

+
4

3
〈µ〉
〈
d′2
〉︸ ︷︷ ︸

〈ρ〉εc

(1.17)
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Here εs represents solenoidal dissipation and εc represents compressible

dissipation. Using asymptotic analysis and DNS for a homogeneous compress-

ible turbulence it was shown that a good model for the εc term is

εc = α1M
2
t εs (1.18)

The effect of the compressible dissipation is shown in Fig 1.27. It can

be seen that the incorporation of the dilatation terms causes a decrease in

the growth rate. However, it can also be seen that the decrease caused thus is

much later, and lesser than what is observed experimentally.

Sirieix and Solignac [1966]
Ikawa and Kubota [1975]
Chinzei et al. [1986]
Papamoschou and Roshko [1988]
Samimy and Elliott [1990]
Goebel and Dutton [1990a]
J. L. Hall [1991]
Barre et al. [1994]
Clemens and Mungal [1995]
Slessor [1998]
Sarkar et al. [1991b]
Pantano and Sarkar [2002]
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Figure 1.27: Results of Sarkar et al. [1991b] in light of experiments

This claim was however refuted by the same author in Sarkar [1995]. In

this paper, the author defined the gradient Mach Number Mg for a homoge-

neous shear flow as

Mg ≡
Sl

c
where S ≡ ∂U

∂y
and l is an integral length scale of turbulence

(1.19)
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The author describes two series of simulations, first with varying gradient

Mach number, and second in with the turbulent Mach number is changed.

Conditions of the test (where 0 represents the initial conditions) are:

Case Mg0 Mc0 Case Mg0 Mc0

A1 0.22 0.40 B1 0.22 0.13

A2 0.44 0.40 B2 0.22 0.20

A3 0.66 0.40 B3 0.22 0.40

A4 1.32 0.40

Figure 1.28: Cases of Sarkar [1995] and the influence of Mc and Mg on production

[b12 refers to the normalized production term]

Figure 1.29: Dilatation effects observed in Sarkar [1995]

[Notice that the dilatation effects are small ]

As shown in Fig 1.28 the primary influence of Mg0 is on the production,

where as Fig 1.29, the compressible dilatation effect was shown to have little
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influence on the reduction of the growth rate. It is further shown that increase

in Mg causes a decrease in the overall turbulent kinetic energy on the flow. This

paper concluded that the compressibility effect of reduced turbulent energy

growth rate in homogeneous shear flow is primarily due to the reduced level

of turbulence production, and that explicit dilatation of the terms have little

influence on the growth rate of the flow.

This stand was again changed by the same author in Pantano and Sarkar

[2002] on the lines of Vreman et al. [1996]. They performed DNS simulations

of a temporal mixing layer, with a tanh type initial velocity profile. The plot

of the momentum thickness θ, with respect to normalized time is shown in

Fig 1.30.

It can be seen from Fig 1.30 that the compressibility effect of increase in

the Mc is captured for the given mixing layer, and that the decrease matches

with the Langley curve, though it over-predicts the growth rate in comparon

to many other experiments. Even more discrepancies are visible when many

other experimental results are plotted as in Fig 1.27.

The turbulent kinetic energy budget was performed to identify the param-

eter which was responsible for the decrease in the growth rate. This budget

is shown in Fig 1.31. This figure clearly shows that there is a decrease in

the production term with increase in Mc, where as the dissipation is almost

unaffected.

The work also claimed that the normalized pressure-strain term decreases

with increasing Mc, which is stated to lead to inhibited energy transfer from the

stream-wise to cross-stream fluctuations, to the reduced turbulence production

observed in DNS to finally lead to reduced turbulence levels as well as reduced

growth rate of the shear layer. They also presented an analysis which shows

that the pressure strain term decreases monotonically with increasing Mach

number. The present work investigates these claims for the case of a spatial

mixing layer.

Sankaran and Menon [2005] studied the mixing of passive scalars for a

spatial mixing layer with LES. They simulated a single mixing layer with

Mc = 0.62. They presented the comparison of the Gradient diffusion sub-grid
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Figure 1.30: Growth of momentum thickness from Pantano and Sarkar [2002]

[Present DNS in the above refers to the work of Pantano and Sarkar [2002]]

scale model with a new sub-grid scale model LES-LEM or the Linear Eddy

Model. They validated the model with several experiments, and showed better

predictions than the gradient diffusion methods. This work, however, does not

focus on the issue of reduced growth rate in a spatial mixing layer.
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Mc = 0.3
Mc = 0.7
Mc = 1.1

Figure 1.31: Turbulent Kinetic Energy budget from Pantano and Sarkar [2002]

[Note: Here P represents the Production, T the transport and ε the dissipation]

1.5 Temporal and Spatial Mixing Layers

As was discussed in the previous sections, temporal mixing layers have

been used by many researchers because they allow the implementation of pe-

riodic boundary conditions in the stream-wise direction, effectively reducing

the size of the domain required for the computation. This allowed Sarkar et al.

[1991a] to perform a direct simulation of a uniform shear flow. This was fol-

lowed by Vreman [1995], who simulated a temporal mixing layer using both

DNS as well as LES techniques. Later Pantano and Sarkar [2002] performed the

temporal mixing layer analysis. The temporal mixing layer analysis provided

valuable understanding of the behaviour of the mixing process. In summary,

the understanding obtained from the above studies are that

• the growth rate reduction effect with increasing Mc of the mixing layer

is captured by a temporal mixing layer,

• the initial thought that the dilatation dissipation plays a significant role

in this effect was later shown to be not so,

• the turbulence production and pressure-strain coupling are the most im-

portant effects responsible for the growth rate reduction effect and
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• the eddy viscosity is anisotropic.

However, there are certain limitations of a temporal mixing layer in that

some effects of a spatial mixing layer cannot be captured by a temporal mixing

layer. Mapping the results of a temporal mixing layer with periodic boundary

conditions in the stream-wise directions to a realistic spatial mixing layer is

not straight forward, and can be considered at best an approximation. Fur-

thermore, temporal mixing layer cannot provide any information regarding the

temporal statistics at a point in the flow field of a spatial mixing layer. For

that a large set of simulations need to be performed and noting that a mix-

ing layer is statistically stationary, the ensemble average can be stated to be

the temporal average. However, computation intensity of DNS makes this ap-

proach infeasible. Another critical issue is that most of the studies presuppose

and rely on self-similarity. In a temporal mixing layer, self-similarity may be

attained in due course of time, but in the case of a spatial mixing layer, the

distance available may not be sufficient to attain self-similarity, unless the con-

ditions are favourable for this to happen. However, attainment of self-similarity

is of much less concern for combustion, flame holding and mixing very close

to the splitter plate are of greatest importance for initiating and sustaining

supersonic combustion. Temporal mixing layers provide absolutely no way to

incorporate this effect of a splitter plate.

1.6 Conclusions

It can be seen from the literature survey, that there is undeniable evidence

for compressibility effects measured by the convective Mach number, delaying

the instability of the mixing layer. The experimental works of Brown and

Roshko [1974] clearly indicated that the effect was not of that related to the

density ratio. Papamoschou and Roshko [1988] verified that the is indeed a

compressibility effect which causes a reduction in the growth rate, and this

was verified by other experiments of Goebel and Dutton [1990a], Samimy and

Elliott [1990], Erdos et al. [1992] amongst others. All experimental evidence

has been with spatial mixing layers. Linear stability does provide a few hints

to the stability of the flow. However, it is known that the assumption for the
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linear stability of small perturbations, is almost immediately violated because

of intense turbulent regimes. The processes that follow include roll up of the

vortex sheet, formation of larger structures, merging of vortices, growth of

the size of the structures and other phenomena which are not even remotely

linear in nature. On the other hand, RANS calculations with the usual eddy

viscosity model, have been shown to be of little use in predicting the growth

rate of the spatial mixing layer. Direct numerical simulation results are very

expensive, and even with the great strides in the computation capabilities

in the recent years, remain to be untenable, especially for realistic domain

sizes. Hence most of the DNS simulations performed, use the homogeneous

turbulence as the model for mixing layer or temporal mixing layer. In the

recent years the reason for the decrease in the growth rate with increasing

Mc have pointed to important directions that have been widely debated. The

inherent shortcomings of a temporal mixing layers have already been discussed

in the previous sections.

On the other hand, where RANS does not provide the adequate prediction

unless the critical modelling questions are addressed, and DNS appears not

economical, Large Eddy Simulation provides a possible intermediate strategy

for solution and provide inputs of value for modelling. LES of supersonic spatial

mixing layer which is realistic with boundary layers over a splitter plate has

not been performed with the aim to study the turbulence and reduction of

growth rate with increasing Mc. The current work is aimed at filling up this

gap.

The thesis consists of the following chapters, Chapter 2 introduces the

reader to the governing equation in raw as well as the LES formulation, the

boundary conditions and the methodology of solution. It then presents the

grid dependence studies. Following this it presents the comparison with many

of the existing experimental results. Finally, this chapter lays out the list of

simulation cases which were used in the rest of the thesis. Chapter 3 presents

many features of the mixing layer pertaining to the velocity field, the pressure

field and the fluctuations of parameters. The frequency component is finally

studied with respect to the flow parameters. Chapter 4 specifically studies the

evolution of the turbulent stresses. This first presents the evolution equation
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of the shear stresses. This is followed by results obtained from the extraction

and tracking the energy transactions in the flow. Chapter 5 first identifies the

important terms needed to model the shear stresses, and then using the LES

results formulates the model for the important components of the shear stress.

The effective Prandtl number and Schmidt number too is obtained from the

LES simulations. Using these a set of cases using URANS is simulated for

tuning the constants of the model. Finally the tuned model is presented with

the sensitivity analysis of the model constants. Chapter 6 first presents the

evolution equation of entropy. This evolution equation is verified by convecting

this field and comparing with the entropy obtained from the flow parameters.

This is followed by a careful extraction and presentation of each source of

entropy, and its variation with Mc. Chapter 7 takes an overview of the work

accomplished, and throws some light on how the work may go forward.
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Chapter 2

Simulation Methodology and

Code Validation

As was discussed in the previous chapter, the crucial problem to be solved is

the case of a spatial mixing layer at realistic conditions. The configuration of a

mixing layer was also presented. This chapter lays the foundation of the rest of

the work, where first, the equations describing the problem and the different

models are described. This chapter then describes the methodology for solving

these equations. The working of the solver, grid independence and comparisons

with experiments are presented. The chapter closes with the enlisting of the

test cases used to study the mixing layer.

The sections of this chapter are as follows

Section 2.1 discusses the mathematical equations which model the problem

to be solved.

Section 2.2 describes the Large Eddy Simulation methodology, the details of

the technique and its suitability for the current problem.

Section 2.3 describes the computation domain used for the calculation and

the specifications of the mesh.

Section 2.4 describes the computation domain used for the calculation and

the specifications of the mesh.

Section 2.5 describes the solution technique adopted for solving the set of

equations. This describes the implementation of the solver as well as the

boundary conditions.
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Section 2.6 describes the technique adopted and the analysis of the time

required to obtain the estimate of averages with the required level of

confidence.

Section 2.7 shows the influence of the mesh size on the results, which is a

necessary condition for confidence in precision of the results.

Section 2.8 describes the results obtained by simulating conditions similar

to some experiments and comparing the results with those experiments.

Section 2.9 describes the fundamental parameters of the problem and the

determination of the configuration of numerical experiments. Using this,

three sets of cases used for further analysis are listed.

2.1 Governing Equations

The mathematical equations which govern the problem of supersonic

flows, including the supersonic mixing layer are listed in Table 2.1

2.1.1 Property Models

The fluid properties are generally considered to be a function of the tem-

perature. Many models exist for the modelling of these properties. The prop-

erty model used in the current simulation are described below.

Viscosity is modelled with the model provided by Sutherland [1893], which

is perhaps the most commonly used model for viscosity. The model is

µ = µ0
T0 + C

T + C

(
T

T0

)2/3

(2.16)

Where µ0 is the reference viscosity at T0, the reference temperature, and C is

a constant. The constants used are shown in Table 2.2.

Thermodynamic Property of Cp is modelled according to the model pro-

vided by McBride et al. [1993]. This model is shown in Table 2.3
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Equation Name Equation

Continuity equation
∂ρ

∂t
+
∂ρui
∂xi

= 0 (2.1)

Momentum Conservation
∂ρui
∂t

+
∂ρujui
∂xj

= − ∂p

∂xi
+
∂σij
∂xj

(2.2)

Reduced to ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+
∂σij
∂xj

(2.3)

Where σij ≡ 2µ

(
Sij −

1

3
Skkδij

)
(2.4)

Sij ≡
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.5)

Energy Equation in et ρ

(
∂et
∂t

+ ui
∂et
∂xi

)
= −∂uip

∂xi
+
∂ujσij
∂xi

+
∂

∂xi
k
∂T

∂xi
(2.6)

Where de = cvdT (2.7)

et = e+
uiui

2
(2.8)

Energy Equation in e
ρ

(
∂e

∂t
+ ui

∂e

∂xi

)
= −p∂ui

∂xi
+ σij

∂uj
∂xi

+
∂

∂xi
k
∂T

∂xi
(2.9)

Energy Equation in h ρ

(
∂h

∂t
+ ui

∂h

∂xi

)
=

(
∂p

∂t
+ ui

∂p

∂xi

)
+σij

∂

∂xj
ui+

∂

∂xi
k
∂T

∂xi
(2.10)

Where h ≡ e+
p

ρ
(2.11)

dh = cpdT (2.12)

Ideal Gas equation p = ρRT (2.13)

Where R =
R
W

(2.14)

Mass diffusion equation ρ

(
∂Yj
∂t

+ ui
∂Yj
∂xi

)
=

∂

∂xi
D∂Yj
∂xi

(2.15)

Table 2.1: List of governing equations

The value of the coefficients a1 to a7 are presented in MacBride [1963].

This model provides equations which map the temperature to the different

properties. In the case where the reverse mapping is required, as in the case

of obtaining the temperature from enthalpy, Newton-Raphson technique is

generally employed.
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Fluid C[K] T0[K] µ0[Pa.s]

Air 120 291.15 18.27× 10−6

Nitrogen 111 300.55 17.81× 10−6

Argon 110 300.55 1.458× 10−6

Hydrogen 72 293.85 8.76× 10−6

Helium 79.4 273 19× 10−6

Table 2.2: Sutherland Coefficients

Parameter Model
cp0

R
= a1 + a2T + a3T

2 + a4T
3 + a5T

4 (2.17)

h0

RT
= a1 + a2

T

2
+ a3

T 2

3
+ a4

T 4

4
+ a5

T 4

5
+
a6

T
(2.18)

s0

R
= a1 ln(T ) + a2T + a3

T 2

2
+ a4

T 3

3
+ a5

T 4

4
+ a7 (2.19)

Table 2.3: Thermodynamic models for cp, h0 and s0 [McBride et al., 1993]

2.2 Large Eddy Simulation (LES)

The mixing layer is a flow which is known to be unstable by the Kelvin-

Helmholtz instability, which causes a roll up of the contact surface. This forms

distinct large scale structures, which have been widely reported in the exper-

iments. These large scale structures carry most of the energy and the bulk of

the turbulent mixing of momentum, energy and species happens due to these

large scale structures. The largest scales of turbulence are typically the same

scale as that of the cross-wise height of the domain. These scales obtain their

energy from the mean flow and they pass on this energy through the turbu-

lence cascade to the smallest sizes where the viscosity effects are strong and

the energy is dissipated into random fluctuations meaning sensible heat. It is

known that the formation of larger structures is an inviscid process and hence

the energy passed down the cascade too is. The larger the turbulent energy

production the smaller the smallest scales are. To be able to obtain the com-
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plete picture of the turbulent flows, it is necessary to simulate accurately all

the scales of turbulence, right up to the smallest scales. This is called Direct

Numerical Simulation (DNS). With increase in the Reynolds number of the

flow, the disparity of the scales goes on increasing. Given the largest scales in

the flow are of the scale l, and the characteristic Reynolds number is Re, the

Kolmogorov scale η is given by

η

l
∼ Re−3/4 (2.20)

We can see that as the Reynolds number increases the size of the small-

est scale goes on decreasing. A typical supersonic combustion chamber has a

Reynolds number of the order of 106 to 107 and a Kolmogorov length scale

of about 1µm 1. To be able to resolve all the scales, one needs a mesh size

of approximately one tenth of the smallest scales. This means a mesh size of

the order of 0.1µm is required for DNS which is prohibitively small even for

modest domain sizes. It is also seen that while most of the energy is contained

in the larger eddies and mixing process and turbulence cascade process also

starts at the larger scales, in DNS a large effort is spent in simulating the

smallest scales.

In most engineering applications, the mean flow parameters are the most

important ones. The closure problem of turbulence makes solving only for the

mean flow properties, which would have been extremely useful, impossible.

However the unclosed terms can be closed using models. This set of equations

is called the Reynold’s Averaged Navier Stokes equations, and a vast variety of

models are available for closing the set of equations. However, this technique

has its drawbacks due to the fact that all models are at best, approximations

based on assumptions. These models are seldom universal, and often assume

conditions like isotropy of turbulence, which is far from the prevailing condi-

tions in a practical flow. Being so, these closure models cannot be considered

universal, and often have to be tuned for each class of problems. In particular,

Launder et al. [1972] shows that the growth rate in compressible regimes is

1To give an example of how small the Kolmogorov scales are, in a typical supersonic
combustion chamber, where the velocity scales are about 500m/s, the viscosity is say 1e-5,
and length scale is 0.1m for the mixing eddies, Re ≈ 5× 10−6 and η ≈ 1× 10−6m
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over-predicted by the RANS closure models.

It is here that Large Eddy Simulations (LES) try to strike an optimum.

LES simulates accurately the larger scales and models only the smaller ones

[Smagorinsky, 1963]. Furthermore, the larger scales are often anisotropic. As

the energy cascades down the turbulence scales, the turbulence becomes more

isotropic [Tennekes and Lumley, 1972]. This makes the sub-grid scale models

more universal and less influenced by the boundary conditions than in the case

of RANS modelling, where all the scales are modelled [Piomelli, 1997].

Jimenez and Moser [2000] and Lucor et al. [2007] have conducted detailed

study on the working of the SGS models, in particular the Smagorinsky class

of models. They have shown that the SGS models predict the sub-grid scale

stresses rather poorly, however the dissipation provided by these models, more

or less matches the production by the large scale. In LES, since the large scales

are exactly computed, hence the production calculations are quite accurate.

The sub-grid scale models tend to mop up whatever energy is passed down to

it through the energy cascade. Hence even if the stress calculations at the grid

level are inaccurate, the large scale structures are captured pretty accurately

by LES, even if the flow fields at length scale close to the grid scale may be

inaccurate. In fact, Jimenez and Moser [2000] showed that the SGS models are

extremely robust even to the choice of the model constants, as far as the large

scale averages and the large scale structures are concerned.

In the case of a spatial mixing layer, this has an added advantage. The

errors developed in the flow field are washed away in course of the simulations,

and do not accumulate, which would have caused a divergence in the results

as in the case of a temporal mixing layer.

2.2.1 Filtering

Filtering is the process in which the Larger scales (spatial as well as

temporal ) of turbulence are retained and the smaller scales are rejected. Thus

filtering in the sense of LES is the application of a high pass filter in spatial and

temporal domain ( and hence a low pass filter in frequency and wave number
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domain ). Filtering is mathematically defined as the convolution

φ (x, t) = G (x, t) ? φ (x, t) =

∞̂

t=−∞

∞̊

ξ=−∞

φ (ξ, t′)G(x− ξ, t− t′)d3ξdt (2.21)

Where ? represents convolution and G the convolution kernel which is charac-

teristic of the filter. The same can be represented in Fourier space as

φ̂ (k, ω) = φ̂ (k, ω) Ĝ (k, ω) or simply, φ̂ = φ̂Ĝ (2.22)

We further define the unresolved as the difference between the original

parameter and the resolved component that is

φ′ (x, t) = φ (x, t)− φ (x, t) (2.23)

Thus

φ′ (x, t) = (1−G (x, t)) ? φ (x, t) (2.24)

Properties of Filtering Kernel

This convolution has certain properties which need to be noted (Germano et al.

[1992], Sagaut [2006])

Conservation of Constants Filtering a constant yields the same value

a = a⇐⇒
∞̂

t=−∞

∞̊

ξ=−∞

G(x− ξ, t− t′)d3ξdt = 1 (2.25)

Linearity The filtering operation is linear

φ+ ψ = φ + ψ (2.26)

Commutation with derivative The filtering operation is expected to be

53



commutating with derivative

∂φ

∂s
=
∂ φ

∂s
(2.27)

To analyse the commutation property we define the commutator [·, ·] of

two operators G and H as the difference caused in changing the order of

application

[G,H] (φ) ≡ G (H (φ))−H (G (φ)) (2.28)

With this definition the above criteria with G = G? and H =
∂

∂s
implies

[
G?,

∂.

∂s

]
= 0 (2.29)

After the enumeration of the properties the filters have, we now observe

a property a filter in general does not have

φ 6= φ =⇒ G ? G ? φ 6= G ? φ (2.30)

Also

φ′ 6= 0 =⇒ G ? (1−G) ? φ 6= 0 (2.31)

Favre Filtering

In the case of compressible flows addition of the weight of density to the filter

makes the equation easier to solve. Hence we define

φ̃ ≡ ρφ

ρ
=⇒ ρφ = ρ φ̃ (2.32)

An important point to be borne in mind is that in actual calculation the

filter is dictated by the numerical schemes and is not explicitly provided for

the simulation. The variables that we solve for are in fact the filtered variables,

and the dissipation effect is provided by the SGS model, which provents the

pile up of the energy near the effective cutoff frequency.
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2.2.2 Filtering of Governing equations

Filtering the Compressible Navier Stokes equations gives the equations of

the filtered variables. We seek a closed form equation in terms of the filtered

variables [Piomelli, 1997].

Continuity Equation

Filtering the mass conservation equation (Eqn 2.1) yields

∂ ρ

∂t
+
∂ ρ ũi
∂xi

= 0 (2.33)

This shows that Favre averaged velocity and average density field satisfy the

continuity equation.

Momentum Equation

Filtering the momentum equation (Eqn 2.2) gives

∂ ρ ũi
∂t

+
∂ ρ ũjui
∂xj

= −∂ p
∂xi

+
∂ σij
∂xj

(2.34)

We define a term

τ sgs

ij ≡ ρ (ũiuj − ũi ũj ) (2.35)

Substituting this in Eqn 2.34 we get

∂ ρ ũi
∂t

+
∂ ρ ũj ũi
∂xj

= −∂ p
∂xi

+
∂ σij
∂xj

−
∂τ sgs

ij

∂xj
(2.36)

On using Eqn 2.33 we get

ρ

(
∂ ũi
∂t

+ ũj
∂ ũi
∂xj

)
= −∂ p

∂xi
+
∂ σij
∂xj

−
∂τ sgs

ij

∂xj
(2.37)

The term τ sgs itself cannot be expressed in terms of the filtered quantities

and this must be modelled. This term appears due to the closure problem of

turbulence. There are various models proposed for the modelling of this term

few of which are briefly discussed in Sect 2.2.3
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Energy equation

Filtering Eqn 2.9 we get

ρ

(
∂ ẽ

∂t
+ ũi

∂ ẽ

∂xi

)
= − p ∂ ũi

∂xi
−
(
p
∂ui
∂xi
− p

∂ ũi
∂xi

)
︸ ︷︷ ︸
SGS pressure dilatation term

+σij
∂ u j
∂xi

+

(
σij
∂uj
∂xi
− σij

∂ u j
∂xi

)
︸ ︷︷ ︸

SGS dissipation

− ∂

∂xi
( ρ ũie − ρ ũi ẽ)︸ ︷︷ ︸

SGS energy flux term

+
∂

∂xi
k
∂ T

∂xi

(2.38)

Where the terms to be modelled are

SGS energy flux term is the most dominant term to be modelled. This rep-

resents the flux of energy due to sub-grid scale velocities.

SGS dissipation term represents the conversion of the kinetic energy to

heat due to sub grid scale viscous dissipation. This term is considered

small and usually neglected.

SGS pressure dilatation term represents the work done due to sub grid

scale pressure fluctuations coupling with the sub grid scale dilatations.

Even this terms is often neglected.

Vreman [1995] and Vreman et al. [1995] showed that for high Mach numbers

the SGS dissipation term, and the SGS pressure dilatation terms are reason-

able large and should be considered for better match with DNS results, and

proposed a scale similar model for these terms.

The energy equation can also be written in the form of enthalpy, as in

Eqn 2.10. When this equation is filtered we get
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ρ

(
∂ h̃

∂t
+ ui

∂h

∂xi

)
=
∂ p

∂t
+ ũi

∂ p

∂xi

+

(
ui
∂p

∂xi
− ũi

∂ p

∂xi

)
︸ ︷︷ ︸

SGS velocity pressure gradient coupling

+σij
∂ u j
∂xi

+

(
σij
∂uj
∂xi
− σij

∂ u j
∂xi

)
︸ ︷︷ ︸

SGS dissipation

− ∂

∂xi

(
ρ ũih − ρ ũi h̃

)
︸ ︷︷ ︸

SGS enthalpy flux term

+
∂

∂xi
k
∂ T

∂xi

(2.39)

The above formulation gives the SGS velocity-pressure gradient term and the

SGS enthalpy flux term , which can be shown to be related to the SGS pressure

dilatation terms and the SGS energy flux term.

2.2.3 Sub-grid Scale Models

The closure problem of turbulence, gives rise to the terms like τ sgs which

cannot be exactly expressed as closed form expression in terms of the filtered

variables. This leads to the next step of being able to model this term in terms

of known filtered quantities. This models are aptly called the sub-grid scale

models. The most researched and the most important model is the model for

the sub-grid scale stress term τ sgs, which appears both in the compressible as

well as the incompressible momentum equation. The first model for SGS was

the Smagorinsky model [Smagorinsky, 1963], of which variations were worked

out like the dynamic model of Germano et al. [1991] and Lilly [1992], and the

scale similarity model of Bardina et al. [1980]. A mixture of the models was

proposed by Leonard [1974]. Erlebacher et al. [1992] provided a foundation

to the LES of compressible flows and presented a mixed model for the com-

pressible isotropic turbulence. We describe here only the One Equation Eddy

Viscosity Model, which is used in the present work.
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One Equation Eddy Viscosity Model

Schumann [1975], Yoshizawa and Horiuti [1985] and Kim and Menon [1999]

proposed another model for the sub-grid scale stresses. This method is based

on calculating the sub-grid scale viscosity based on the sub-grid scale kinetic

energy. This method basically states

νsgs = Cm∆
√
qsgs (2.40)

Where

q2
sgs =

1

2
(ui
′ui
′) (2.41)

qsgs itself is solved with a separate evolution equation, with models for

turbulent dissipation and the turbulent diffusion terms.

∂q2
sgs

∂t
+
∂ ũj q

2
sgs

∂xj
= −τij S ij − C1

(q2
sgs)

3
2

∆
+ C2

∂

∂xj

(
∆
√
q2

sgs

∂q2
sgs

∂xj

)
+ ν

∂2q2
sgs

∂xj∂xj
(2.42)

Where the model constants C1, and C2 were given as 1 and 0.1 respectively

by Yoshizawa and Horiuti [1985] and 1 and 0.094 respectively by Schumann

[1975].

The obvious advantage of models where the eddy is considered to be a

proportional to the turbulent kinetic energy is that in the regions where the

flow tends to become laminar with respect to the grid scales, the eddy viscosity

tends to become zero, as must be the case. It was observed that as predicted

by Jimenez and Moser [2000], the average quantities were rather insensitive

to the selection of the SGS model, at least for the current class of simulations

of a spatial mixing layer. The model in this study was the one equation eddy

model as Kim and Menon [1999] had proven this model to be quite accurate

for temporal mixing layer simulations.
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2.3 Domain And Mesh

2.3.1 Domain and conventions

The domain for the solution is rectangular, with a splitter plate on the

inlet side separating the primary and the secondary streams. The bounding

surfaces of the domain of interest are shown in Fig 2.1. Also shown is the

direction of the coordinate system, and the names of the direction. These

direction name convention is used throughout the work. Also to be mentioned

is that the origin is at the center of the trailing face of the splitter plate, both

in the span-wise direction as well as in the cross-wise direction.

Primary Inlet Upper Wall
Splitter Plate Lower Wall

Secondary Inlet Sides Walls
Outlet

*Note that the figure is representative and not

to any scale.

X
Y

Z

stream
cross

span

Figure 2.1: Domain bounding surfaces, coordinate system and directions

The flow enters the domain through the primary and the secondary inlet

surfaces, mixes in the domain and flows out of the domain through the outlet.
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As we shall see later, the growth of the boundary layer primarily, causes an

increase in the pressure in the stream-wise direction. To be able to maintain

a near zero stream-wise pressure gradient, in some of the simulations, a slight

divergence is provided in the upper and lower walls. The divergence is attained

through a region of smooth bend of a relatively large radius of curvature, to

prevent causing strong expansion fans and to disturb the flow minimally.

2.3.2 Mesh

The mesh used is Cartesian mesh, all elements are rectangular elements.

Figure 2.2: Mesh near splitter plate

[Notice the fine mesh near the trailing edge of the splitter plate]

Figure 2.3: Full Mesh

[Notice the fine mesh in the central region and near the walls]

Figure 2.2 and Fig 2.3 show a typical mesh used in the current work.

The mesh is finer near the walls and the splitter plate. The mesh is coarser
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downstream since both the size of the smallest eddies as well as the size of

the largest structures increase as they proceed downstream. Also the sharp

gradients present in the initial parts of the mixing become smoother as they

recede from the splitter plate.

2.4 Boundary Conditions

2.4.1 Primary and Secondary inlets

Velocity boundary condition is implemented by imposing a random noise

about a mean which is profiled to emulate a largely uniform flow with bound-

ary condition, with a modifiable temporal correlation and a given standard

deviation(see Appendix A.1 on Page182 for details)

Pressure at a major section of the inlet is fixed, because the inlet has largely

inward supersonic flow. In the regions where the flow is not supersonic, that

is the places where there is the presence of a boundary layer, either due to the

presence of the top or bottom walls, or due to the splitter plate, the pressure

is determined by the use of characteristics.

Static Temperature is determined from the total temperature which is

constant throughout the boundary. This total temperature is selected so as to

produce a defined mean static temperature in the quiescent part of the flow.

Mass fraction in the case of dissimilar gasses is constant close to unity

(but not exactly 1 to prevent some singularities in computation) for one of the

species for a stream and close to zero for the other species and vise-versa for

the other stream.

2.4.2 Walls and Splitter plate

Velocity is imposed U = 0 for the splitter plate for all cases, and those cases

with no slip on the top and bottom walls. In those cases where the top and

bottom walls are prescribed to be slip, only the velocity component normal
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to the surface is imposed to be zero, while the tangential component of the

velocity has no gradient in such cases. This is roughly valid for cases where

there is no strong shock impinging on the surface.

Pressure at upper and lower walls and the splitter plate is assumed to have

zero gradient normal to the surface of the flow. This too is reasonable since

the current flow does not have strong shock waves impinging on the surface.

Temperature at the upper and lower walls and the splitter plate is consid-

ered to have a zero normal gradient, since it is assumed that these are adiabatic

surfaces.

Mass fractions at the upper and lower walls and the splitter plate is con-

sidered to have a zero normal gradient, since it is assumed that these surfaces

are closed and there is no surface reaction.

2.4.3 Outlet

Pressure and Velocity are implemented such that it is a non reflecting

surface. Since most of the boundary surface sees supersonic outgoing fluid,

the pressure is dictated only from the domain. However this is not true in

the regions near to the walls where the Mach number reduces to below unity.

Here the pressure and velocity are decided on the basis of the characteristics

to result in a non reflecting boundary.

Temperature and Mass fraction at the outlet is implemented as zero

gradient for flow going outside the domain, however for incoming flow, which

is extremely rare and an isolated event near to the walls, the temperature of

the incoming stream is a fixed constant value.
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2.5 Solution methodology

All simulations have been performed using OpenFOAM [Jasak et al.,

2007]. OpenFOAM is a free and open source toolkit which provides a set

of libraries for data handling, mesh handling, implicit and explicit calculus,

boundary handling, parallellization and a large set of in built solvers and util-

ities. However, the present work utilizes the package as a library and a specific

code was written for LES of supersonic flow of dissimilar gasses using the

utilities provided.

The algorithm to solve the set of coupled equations was done using the

PISO algorithm of Issa [1986] (which is an improvisation of the SIMPLE

[Patankar, 1980] ). The basic steps of the algorithm are

1. Set the boundary conditions.

2. Solve the discretized momentum equation to compute an intermediate

velocity field.

3. Compute the mass fluxes at the cells faces.

4. Solve the pressure equation.

5. Correct the mass fluxes at the cell faces.

6. Correct the velocities on the basis of the new pressure field.

7. Update the boundary conditions.

8. Repeat from 3 for the prescribed number of times.

9. Solve for energy equation, mass fraction equation.

10. Do all the post processing steps.

11. Increase the time step and repeat from 1.

2.5.1 The solution method in detail

OpenFOAM provides two basic methods of calculus called

Finite Volume Calculus which provides for the time explicit computation

of gradients of fields using many schemes

Finite Volume Method which provided for the time implicit computation

of gradients of fields using many schemes
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Time explicit methods provide directly the calculated field. The time implicit

schemes provide sparse matrix which when solved provides the gradient of

the field. The temporal scheme decides the implicitness of the field, and a

range of temporal schemes are provided. It is to be noted that the matrix so

produced can be solved using different iterative techniques which are special

sparse matrix solvers

Type of Matrix Method Name

Symmetric

Incomplete-Cholesky preconditioned conjugate gradient ICCG

Diagonally preconditioned conjugate gradient DCG

Algebraic multi-grid AMG

Asymmetric

Incomplete-Cholesky preconditioned biconjugate gradient BICCG

Diagonally preconditioned biconjugate gradient BDCG

Gauss-Seidel GaussSeidel

An important point to be noted that since the matrix solvers are iterative

in nature, and the matrix solution for implicit solution, it is necessary for

the update of the coefficients corresponding boundary condition after every

iterative step of the matrix solver.

The parallel implementation of the OpenFOAM library is of distributed

memory architecture with OpenMPI. Being so, the parallelization is achieved

by domain decomposition, which in the current work has been done using

the metis algorithm. Being of distributed memory architecture, the coefficient

information has to be transmitted across processor boundaries after every it-

eration of the sparse matrix solver, so that the matrix solution is consistent.

2.5.2 Selection for the simulations

The following selection is made for all the LES simulations

Type Parameters Scheme Specs

Temporal Scheme All Second order Backward Euler

Gradients
Basic parameters Fourth order least squares

Post Processing Second order Gauss

Matrix Solvers
ρ PCG with DIC2 pre-conditioner Tolerance of 1e-10

All others PBiCG with DILU3 pre-conditioner Tolerance of 1e-10

LES Subgrid-Scale Model One-Equation Eddy model
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A second order temporal scheme is needed to have time accurate solutions.

Greater than the second order solutions require prohibitively large memory re-

quirement, and hence are generally not used. Second order spatially accuracy

was initially tried, but was found to be more diffusive than what would be

acceptable, where as fourth order scheme was found to be adequate. The order

of accuracy greater then the fourth order was not sought because a greater or-

der of accuracy involves a much larger information required to be transmitted

between the computation nodes, which become the bottlenecks for computa-

tion. A compact scheme of higher order, or a spectral scheme would have been

a possible solution. However an aim for future expansion towards three di-

mensional simulations with complex geometries with unstructured mesh made

distributed memory architecture a necessity, and in this architecture compact

schemes or spectral schemes algorithms are both complex as well as unsuited.

In all the cases the time stepping has been such to maintain the Courant

number to below 0.1.

2.6 Averaging

The averaging of flow field is done by performing the summation of the

required variables. This summation is done incrementally at every time step

after the solution stage. Thus the calculation of any of the averages is simply

done as

〈Q〉 =

∑
i∈I

Qi∑
i∈I

1
(2.43)

where I is the list of time steps representing the desired time range of averag-

ing. Favre averaging is accomplished by performing the density weighted sums

as

{Q} =

∑
i∈I

ρiQi∑
i∈I

ρi
(2.44)

For the quantities which are products of fluctuations, we use

〈P ′Q′〉 = 〈PQ〉 − 〈P 〉 〈Q〉 (2.45)
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And hence for quantities like 〈P ′Q′〉 sums of PQ, P and Q are all maintained,

and the averaging is performed at the end of the time duration.

2.6.1 Time required for averaging

Two important parameters as far as averaging is concerned are

1. The initial offset required for the arbitrary initial conditions to have

insignificant effect

2. The time required to be able to estimate a given measure of average with

a reasonable level of confidence.

This subsection describes the way in which these two times were esti-

mated. The average measurement of Ux and τxy at a point about 0.4[m] from

the splitter plate is shown in Fig 2.4. This figure shows how the averages

change with different window sizes ∆t and different offsets in time from the

initial time. The right side plot shows the probability density of the average.

It can be seen that the measurement of the average velocity with 95% interval

of confidence 4[m/s] when we use a time duration of about 2[ms]. With this

same duration for ∆t, however, we see that an estimation of τxy with 95% level

of confidence is still about 80[m2/s2] which is prohibitively large. An interval

of 5[ms], however reduces it to about 36[m2/s2], which is about 7% of the peak

value.

Another fact that is noticed is that there is a lot of variation in the initial

measurement of τ due to the initial conditions, however, this value settles

after about 4[ms], after which measurements can be taken without having the

influence of the initial condition.

In all calculations, the average is calculated for ≈ 0.01[s], which amounts

to around 8 sweeps of the convective structures, with an initial delay of ≈ 6[s],

which amounts to about 5 sweeps of the convective structures.
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Figure 2.4: Precision vs Time of average for Ux and τxy
[It is seen that we can attain a good precision if we collect data for more than 0.005[s]

for averaging ]
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2.7 Grid Dependence

In order to make the predictions by the simulations with a high degree of

confidence, and with precision, it is necessary to demonstrate that the mean

profiles of the parameters are independent of the mesh resolution. For this the

same simulation was performed with three different meshes. The parameters

for the simulations and the mesh sizes are shown in Table 2.4. These simula-

tions were of the multi-species type, and used exactly the same schemes and

procedures used in the rest of the thesis.

Parameter Primary Secondary

Fluid N2 Ar
Velocity [m/s] 727.2 472.7
Temperature [K] 405.7 289.27
Mach Number 1.7 1.4
Pressure[kPa] 46
ρ[kg/m3] 0.38 0.76

Velocity Ratio 0.65
Density Ratio 2
Mc 0.35

Mesh Name Mesh Size

Fine Mesh 1200× 260
Medium Mesh 800× 200

Coarse Mesh 600× 160

Table 2.4: Flow conditions and mesh sizes used for grid dependence studies

2.7.1 Mean Velocity Profile

The mean velocity profile with the simulations with three grids is shown

in Fig 2.5.

It can be seen from Fig 2.5 that the average stream-wise velocity plots

are almost coincident. This plot clearly shows that the solution of the average

velocity profile can be predicted precisely, and independent of the resolution in

the range. The fact that the actual grid used is similar to the Medium mesh,

lays to rest concerns regarding the dependence of the solution on the quality

of the mesh.
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Figure 2.5: Mean velocity profiles for different grids

[All the curves are almost coincident, indicating almost independence of the mesh. The

rectangular section on the top indicates the section in the domain where the data is

presented ]
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Figure 2.6: Mean Ar mass fraction profiles for different grids

[The top figure indicates where in the domain the curves are plotted.All the curves are

almost coincident, again, indicating almost independence of the mesh]
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2.7.2 Mean Species Profile

Shown in Fig 2.6 is the cross-wise species distribution of Ar. It is again

seen that the three curves are almost coincident and there is little scope for

doubt regarding the independence of the solution from the quality of the mesh

which is of quality similar to the Medium Mesh.

2.7.3 Mean Temperature Profile
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Figure 2.7: Mean temperature profiles for different grids

[All the curves are coincident except near the walls]

Like the other profiles, the mean temperature profiles shown in Fig 2.7

is almost coincident for most of the flow, except very close to the walls, where

they show about 5% deviation of the maximum variation. In the region of the

mixing the deviation is less than 3% of the total variation.

2.7.4 Turbulent Kinetic Energy Spectrum

The turbulent kinetic energy spectrum of the velocity field is a useful indi-

cator of the mesh, and its adequacy. A coarse mesh filters out lower frequencies

more than finer mesh. It is needed that the energy carrying low energy spec-

trum be largely unaffected by mesh, but the effect of mesh on higher frequency

content is unavoidable.
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The turbulent kinetic energy spectrum is plotted in Fig 2.8. The left

figure shows that near to the splitter plate the frequency as well as the peak is

captured for all the grids, while far away, the coarse grid gives lesser energies

for higher frequencies. It can this be clearly inferred that grid independence

has adequately been achieved, and that the Medium Mesh is sufficiently fine

to be used with LES to have precise simulations which does not depend on the

grid resolution.
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Figure 2.8: Turbulent Kinetic Energy spectrum at two different downstream loca-
tions along the centerline

[At the nearer station(left) there is no difference and the frequency is accurately

captured along with the peak value, and at 75% the flow distance (right), also the

peak frequency and value is similarly captured for Medium Mesh and Fine Mesh,

coarse mesh gives slightly lower energies at higher frequencies]

It must be noted that Oh and Loth [1994] has indicated that a minimum

of 20 grid points are needed across the mixing layer to be able to obtain grid

independence. In the current work more than twice the grid points than is

required by the criteria have been used. Oh and Loth [1994] however used

IES (Inviscid Eddy Simulation) which is quite different from the Large Eddy

Simulation, with the latter being expected to provide better convergent results.

2.8 Experimental Comparison

The simulation methodology was compared with experimental cases, es-

tablished trends in growth rate and turbulence levels. The first set of test cases

used were the supersonic cases of Goebel and Dutton [1990a], the next set of
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Parameter Case 1 Case 2

Fluid Air Air Air Air
Velocity [m/s] 515 700 404 399
Temperature [K] 162 339 214 215
Mach Number 2.01 1.89 1.37 1.35
Pressure[kPa] 46 49
ρ[kg/m3] 0.980 0.50 0.75 0.79

Velocity Ratio 0.780 0.57
Density Ratio 0.760 1.57
Mc 0.202 0.45

Table 2.5: Flow conditions of Goebel and Dutton [1990a]

experimental results which were used were from Papamoschou and Roshko

[1988].

2.8.1 Comparison with experiments of Goebel and Dutton

[1990a]

Goebel and Dutton [1990a] conducted compressible mixing layer experi-

ments with air as the fluid, and Mc varying from 0.2 to 0.99. Two representative

test cases were selected for the verification as outlined in Table 2.5.

Self Similar Velocity Profile

The first parameter compared is the self similar velocity profile. Figure 2.9

shows the self similar profiles obtained from the simulation in a background of

the experimental self similar profile.

The x axis of the plot is the velocity scaled between 0 and 1, and the y

axis is scaled and shifted so that U1 − 0.1∆U and U2 + 0.1∆U fall at 0.5 and

−0.5 respectively (so that the length between these points is scaled to 1 and

are equidistant from 0). It can be seen that the profiles match almost exactly,

except for a small difference near the secondary stream. The self similar velocity

profiles are expected to attain a error function for the incompressible flows

[Herrmann Schlicting, 2000]. Though the attainment of such a profile is only
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case 1
case 2

Figure 2.9: Comparison of average Velocity obtained from the experiments compared
with the simulations

[The faded background image is from Goebel and Dutton [1990a] ]

asymptotic, the nearness to the error function is an indication of attainment

of self similarity, at least in the first order statistics. It was observed by Goebel

and Dutton [1990a] that even for high Mc cases, the mean velocity profile was

not significantly different than that of an incompressible mixing layer and the

same has been observed in the simulations.

Reynold’s stresses

The next parameter compared are the turbulence intensities in the self similar

region. This defined as in the experiment as

σij ≡
√
〈ui′uj ′〉
∆U

(2.46)

It can be seen from the Fig 2.10 that the match for the current case is

almost precise in all the components of the turbulence intensities, especially

the case of 〈u′v′〉 which is most critical for the growth rate. In the case of

σxx, the spread is observed to be greater than in the case of the experiment,

however the peak value is accurately captured.
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Figure 2.10: Comparison of Turbulence Intensity

[Plotted above are the σxx(ux
′, ux

′) correlation (top left), the σyy(uy
′, uy

′) correlation

(top-right), σxy(ux
′, uy

′) velocity correlation (bottom left) and the ratio of σu and

σv(bottom right). The experimental data is case 1 of Goebel and Dutton [1990a]]

Growth Rates

The growth rates obtained from the simulation have been scaled and plotted

in Fig 2.11 in a backdrop of experimental growth rates. It can be clearly seen

that

1. The growth rate lies entirely within the band of experimentally obtained

growth rates

2. The simulation is clearly able to capture the reduces growth rates phe-
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Figure 2.11: Growth Rates form Goebel and Dutton [1990a]

[The growth rate from simulations of experiments of Goebel and Dutton [1990a] falls

within the band of experiments]

nomenon with increasing Mc

2.8.2 Comparisons with the experiments of Papamoschou

and Roshko [1988]

Two test case from Papamoschou and Roshko [1988] were simulated Case

2 and Case 3. The details of the cases are outlined in table Table 2.6.

Comparison of growth rates

The growth rates of the simulations of experiments from Papamoschou and

Roshko [1988] are plotted along with the simulation results against other ex-

perimental results in Fig 2.12. It can be again seen that the growth rates lie

in the band of experimental results, and that the decrease in the growth rate
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Parameter Case 2 Case 3

Fluid Ar 2 Ar N2
Velocity [m/s] 497.8 640.3 402.6 477.8
Temperature [K] 61.8 102.7 144.2 190.14
Mach Number 3.4 3.1 1.8 1.7
Pressure[kPa] 7 7
ρ[kg/m3] 0.54 0.23 0.23 0.12

Velocity Ratio 0.80 0.74
Density Ratio 0.42 0.54
Mc 0.26 0.33

Table 2.6: Flow conditions

is captured by the simulation.
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Figure 2.12: Growth Rates from simulations of experiments from Papamoschou and
Roshko [1988]

[The growth rate from simulation of experiments of Papamoschou and Roshko [1988]

falls within the band of experiments]
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Pitot measurement

From the simulations, the local average static pressure and the local average

Mach number can be calculated. From Reyleigh’s pitot equation (Eqn 2.47)

we can back calculate
pt
p

at any location. This is compared with the docu-

mented values.

p0

p
=

(
(γ + 1)2M2

4γM2 − 2 (γ − 1)

)( γ

γ − 1

)(
1− γ + 2γM2

γ + 1

)
(2.47)

simulation

simulation

Figure 2.13: Pitostatic measurements

[The match between the experimental and the simulation pitot measurement is within

acceptable limits. The background is the experimental results extracted from

Papamoschou and Roshko [1988]]

It can be seen from Fig 2.13 that even though at lower distances the

match is not very accurate, in the self similar regions, the match is almost

perfect with the experiments.

2.8.3 Schlieren Images

Instantaneous density gradient is plotted in gray-scale to simulate the

schlieren. This is compared with the schlieren presented in the experiment in

Fig 2.14.

The differences in the images can be reasoned out as
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Figure 2.14: Schlieren images from experiment(top) and from simulations(bottom)

[Width of the structures roughly match with the presence of similar structures]

1. The schlieren image from the simulation is obtained by plotting on a

single plane, while the schlieren is effectively the spatial average4 of the

gradient density in the spanwise direction. Hence any small amount of

three dimensionality in the density field will cause a smudging in the

schlieren obtained. It is not that the structures are completely invisible

in the experimental schlieren, and a careful examination of the image,

especially on the right side shows the presence of these structures roughly

of the same size of those obtained in the simulation

2. The images in the corresponding reference is presented as two separate

images, which were taken separately and with slightly differing lighting

conditions. It can be easily seen as well as it was commented by the

authors that the schlieren images are not very clear and give significantly

differing results for slightly differing lighting conditions.

A good match, however, has been obtained in the width of the mixing layer. It

can be seen that roughly the positions of the outer edges of the mixing layer

match. This is roughly the width of the mixing layer and indicates the growth

and mixing.

With this we can conclude that

• The LES simulations are able to capture the mean velocity profiles quite

accurately.

4The spark in the experiment was of 20ns duration, during which the structures move
about 0.02µm. Hence the smudging is not due to temporal averaging
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• The simulations capture the reduction in growth rate with increasing Mc

observed in experiments.

• The simulations predict the trends in the turbulence levels, where it is

observed in experiments.

• The simulations are able to show the large scale structures.

2.9 Test Cases

The most fundamental parameters in the case of a mixing layer, consid-

ered in this study are the convective Mach number Mc, the average velocity

Uavg, the velocity ratio r, and the density ratio s. These parameters have the

following definitions.

Mc ≡
U1 − U2

a1 + a2

(2.48)

Uavg ≡
U1 + U2

2
(2.49)

r ≡ U2

U1

(2.50)

s ≡ ρ2

ρ1

(2.51)

A study of the influence of each of the above parameters on the supersonic

mixing layer is to be studied. For the sake of simulations, we need to convert

from these parameters to the parameters which are supplied as the boundary

conditions.

These dependent parameters can be calculated as (see Appendix A.2 on

Page184 for derivation)
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U1 = 2
Uavg
1 + r

(2.52)

U2 = 2
r

1 + r
Uavg (2.53)

T2 =
1

γR

2

(
1− r
1 + r

) Uavg

Mc

(
s

1
2 + 1

)
2

(2.54)

T1 =
s

γR

2

(
1− r
1 + r

) Uavg

Mc

(
s

1
2 + 1

)
2

(2.55)

These equations are suitably modified for calculating the flow field pa-

rameters for dissimilar gases. It is important to note that the velocities are

uniquely determined by Uavg and r alone. Role of Mc comes in determining the

temperatures and hence the densities.

2.9.1 Case Specifications

Three sets of test cases were used to analyse the problem. The first and

the second test cases use the same species on both the primary as well as the

secondary streams. The third and the fourth use different species. The first

two test cases are designed to enable a study of the problem with only one

of the four flow parameter varying. The second set is different from the first

in that the interesting parameter Mc is studied in greater detail, and that the

domain is somewhat larger than the first test case. The third test case is meant

to study the mixing aspect and the entropy generation.
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C
a

se Species Uavg Mc r s
U [m/s] T [K] M p a[m/s]

P S [m/s] P S P S P S [kPa] P S

1 Ar Ar 400 0.30 0.74 1.25 459.5 340.4 126.8 101.5 2.19 1.81 7 209.7 187.6
2 Ar Ar 450 0.30 0.74 1.25 517.0 382.9 160.5 128.4 2.19 1.81 7 236.0 211.0
3 Ar Ar 500 0.30 0.74 1.25 574.4 425.5 198.2 158.6 2.19 1.81 7 262.2 234.5
4 Ar Ar 550 0.30 0.74 1.25 631.9 468.0 239.8 191.9 2.19 1.81 7 288.4 258.0
5 Ar Ar 600 0.30 0.74 1.25 689.3 510.6 285.4 228.3 2.19 1.81 7 314.6 281.4

7 Ar Ar 500 0.25 0.74 1.25 574.4 425.5 285.4 228.3 1.83 1.51 7 314.6 281.4
8 Ar Ar 500 0.30 0.74 1.25 574.4 425.5 198.2 158.6 2.19 1.81 7 262.2 234.5
9 Ar Ar 500 0.35 0.74 1.25 574.4 425.5 145.6 116.5 2.56 2.12 7 224.7 201.0
10 Ar Ar 500 0.40 0.74 1.25 574.4 425.5 111.5 89.2 2.92 2.42 7 196.6 175.9

11 Ar Ar 500 0.30 0.74 2.50 574.4 425.5 266.9 106.7 1.89 2.21 7 304.3 192.4
12 Ar Ar 500 0.30 0.74 1.67 574.4 425.5 225.9 135.5 2.05 1.96 7 279.9 216.8
13 Ar Ar 500 0.30 0.74 1.25 574.4 425.5 198.2 158.6 2.19 1.81 7 262.2 234.5
14 Ar Ar 500 0.30 0.74 0.83 574.4 425.5 162.0 194.4 2.42 1.64 7 237.0 259.7
15 Ar Ar 500 0.30 0.74 0.71 574.4 425.5 149.2 208.9 2.52 1.58 7 227.5 269.2

16 Ar Ar 500 0.30 0.80 1.25 555.5 444.4 110.3 88.2 2.84 2.54 7 195.6 174.9
17 Ar Ar 500 0.30 0.77 1.25 565.2 434.7 152.0 121.6 2.46 2.12 7 229.6 205.4
18 Ar Ar 500 0.30 0.74 1.25 574.4 425.5 198.2 158.6 2.19 1.81 7 262.2 234.5
19 Ar Ar 500 0.30 0.71 1.25 583.3 416.6 248.2 198.6 1.99 1.59 7 293.4 262.4
20 Ar Ar 500 0.30 0.69 1.25 591.8 408.1 301.5 241.2 1.83 1.41 7 323.3 289.2

Table 2.7: Specifications of Set1 designed to study the effect of one of the parameters
(Uavg, Mc, r and s) at a time

C
a

se Species Uavg Mc r s
U [m/s] T [K] M p a[m/s]

P S [m/s] P S P S P S [kPa] P S

1 Ar Ar 400 0.25 0.70 1.25 470.5 329.4 256.5 205.2 1.58 1.23 7 298.28 266.7
2 Ar Ar 400 0.30 0.70 1.25 470.5 329.4 178.1 142.5 1.89 1.48 7 248.57 222.3
0 Ar Ar 400 0.35 0.70 1.25 470.5 329.4 130.8 104.6 2.21 1.73 7 213.06 190.5
3 Ar Ar 400 0.40 0.70 1.25 470.5 329.4 100.2 80.1 2.52 1.98 7 186.43 166.7
4 Ar Ar 400 0.45 0.70 1.25 470.5 329.4 79.1 63.3 2.84 2.22 7 165.71 148.2
5 Ar Ar 400 0.50 0.70 1.25 470.5 329.4 64.1 51.3 3.16 2.47 7 149.14 133.4
6 Ar Ar 400 0.55 0.70 1.25 470.5 329.4 53.0 42.4 3.47 2.72 7 135.58 121.2

7 Ar Ar 300 0.35 0.70 1.25 352.9 247.0 73.6 58.8 2.21 1.73 7 159.79 142.9
0 Ar Ar 400 0.35 0.70 1.25 470.5 329.4 130.8 104.6 2.21 1.73 7 213.06 190.5

10 Ar Ar 400 0.35 0.65 1.25 484.8 315.1 189.0 151.2 1.89 1.38 7 256.10 229.0
0 Ar Ar 400 0.35 0.70 1.25 470.5 329.4 130.8 104.6 2.21 1.73 7 213.06 190.5
11 Ar Ar 400 0.35 0.75 1.25 457.1 342.8 85.7 68.6 2.65 2.22 7 172.48 154.2

0 Ar Ar 400 0.35 0.70 1.25 470.5 329.4 130.8 104.6 2.21 1.73 7 213.06 190.5
15 Ar Ar 400 0.35 0.70 2.00 470.5 329.4 161.1 80.5 1.99 1.97 7 236.44 167.1
16 Ar Ar 400 0.35 0.70 3.00 470.5 329.4 188.7 62.9 1.84 2.23 7 255.89 147.7
17 Ar Ar 400 0.35 0.70 4.00 470.5 329.4 208.7 52.1 1.75 2.45 7 269.08 134.5

Table 2.8: Specifications of Set2 designed to study effect of Mc to a greater detail,
and in a larger domain
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C
a

se Species
Uavg Mc r s

U [m/s] T [K] M p a[m/s]
P S [m/s] P S P S Prm Sec [kPa] P S

1 N2 Ar 400 0.25 0.75 1.25 457.1 342.9 128.9 147.9 2.98 1.52 7 231.37 225.80
2 N2 Ar 400 0.30 0.70 1.25 470.6 329.4 136.5 155.8 2.98 1.42 7 238.17 232.44
3 N2 Ar 400 0.35 0.65 1.25 484.9 315.2 144.9 165.4 2.98 1.32 7 245.39 239.49
4 N2 Ar 400 0.40 0.65 1.25 484.9 315.2 111.0 126.6 2.36 1.50 7 214.72 209.55
5 N2 Ar 400 0.45 0.65 1.25 484.9 315.2 87.7 100.0 2.54 1.69 7 190.86 186.27
6 N2 Ar 400 0.50 0.65 1.25 484.9 315.2 71.0 81.0 2.82 1.88 7 171.77 167.64
7 N2 Ar 400 0.35 0.65 4.00 484.9 315.2 236.9 84.5 1.55 1.84 7 313.73 171.16

Table 2.9: Specifications of Set3 designed to study the mixing of dissimilar gasses
and entropy generation.

2.10 Summary

In this chapter the problem was described mathematically, and the LES

setup was explained along with the sub-grid scale model used. The domain

was defined for the purpose with the grid and boundary condition specifica-

tions. The solution methodology was then explained. It was then shown how

the averaging process was arrived at, as to how much of time is required for

averaging. Grid independence was then established, and was shown that for

grids finer and coarser than the selected grid, there was hardly any difference in

the mean profiles, and the turbulence spectrum too showed only the expected

difference at high frequencies. Simulations were performed with select cases

where experimental values were available, and it was seen that the match was

excellent with respect to the mean parameters, moderate for turbulence mea-

sures. Finally a strategy was laid out to be able to study each of the influencing

flow parameters independently, and all the test cases were listed.
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Chapter 3

Features Of The Mixing Layer

In the previous chapter, the validity of the code, and its usefulness in sim-

ulating the spatial mixing layer was demonstrated. We now put to use this

methodology in studying the mixing layer, starting with the statistical and

mean properties.

This chapter is intended to explain some of the intricate features which

are observed in a plain mixing layer. It opens with the features based on the

instantaneous and mean profiles of velocity (Sect 3.1). First the growth rates

measured from the simulations are presented in the background of the existing

literature (Sect 3.1.1). This is followed by a discussion of two closely related

phenomena of attainment of self-similarity (Sect 3.1.2) and of velocity deficit

removal (Sect 3.1.3).

The distance it takes for assuming the mean velocities have attained self-

similarity and the distance it takes for the velocity deficit to reduce to near zero

is studied here. This study is important, because many of the theories existing

make the assumption of self-similarity, and it is important to understand under

what conditions how much distance it takes to achieve the same. This in turn

reflects the practical applicability of the said theory.

This is followed by the study of coherent structures (Sect 3.1.4) and

the study of the convective velocity (Sect 3.1.4). Theory has a number of

assumptions made to be able to calculate the convective velocities. A direct

measurement of the same from simulation gives an idea of how valid those

assumptions are.

This is followed by the observations regarding mean pressure profiles
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(Sect 3.2). This includes a discussion on the Mach disturbances emanating

from the splitter plate (Sect 3.2.1). It is observed that the mixing layer has

a relatively lower average pressure compared to the free stream and this can

be explained through boundary layer equations to be caused by turbulence.

This pressure deficit is compared with the expected pressure deficit due to

turbulence (Sect 3.2.2).This is followed by a comparison of the pressure rise

in the domain with parallel walls with the expected pressure rise due to the

mixing and due to the boundary layer (Sect 3.2.3).

The presence of the coherent structures in the walled channel causes the

stream to have coherent fluctuations in pressure and velocity (Sect 3.3). The

coherent pressure fluctuations are estimated by performing a point-to-point

correlation in the cross stream direction. This is followed by velocity correla-

tions and discussions regarding pressure-velocity correlations.

The mixing layer initially is smaller in size and is composed of high fre-

quency disturbances, which coalesce downstream and form larger disturbances

and turn to lower frequencies. The spectrum of these disturbances is analysed

next (Sect 3.4).

3.1 Features based on Mean Velocity

At the inlet of a spatial mixing layer is the splitter plate over which

boundary layer develops on both sides. Thus at the point where the two streams

meet, the boundary layers cause a velocity deficit. This deficit is removed in

due course of mixing, and the mean velocity profile evolves from a double

boundary layer profile to a tanh type of a profile, which grows in the stream-

wise direction. Three important features based on the mean velocity are the

Growth rate, the attainment of self similarity and the velocity rate of removal

of velocity deficit, which are discussed in the following sections. Besides, based

on instantaneous velocity, the structures can be identified which is also studied

in detail.
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3.1.1 Growth Rate

The growth rate is a parameter of significance because it indicates the

amount of momentum mixing, which scales with the species and energy mixing

too. The growth of the mixing layer is measured by fitting a tanh profile

and measuring the 90% distance, as describe in the introduction chapter. The

measured growth is linear (constant growth rate) in the self similar region. Self

similarity in the parameters implies a constant rate of growth in the case of a

mixing layer with zero pressure gradient. A representative measurement of a

typical growth profile is shown in Fig 3.1
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0.016

δ[
m

]

δ′ = 0.0354± 0.000182

Growth Rate
Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.25

measurement-accepted
measurement-rejected
linear curve fit

Figure 3.1: Typical Growth of a Mixing layer

[Notice the linear portion used for the measurement of the growth rate]

To study the effect of Mc on the growth rate, the effect of the velocity

ratio r and the density ratio s must be removed. It is usually assumed that

the effect of compressibility can be separated out and expressed as

δ′(Mc; r, s) = δ′0(r, s)f(Mc) (3.1)
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Here the incompressible growth rate δ′0(r, s) is the growth rate of the incom-

pressible flow at the same velocity ratio and the density ratio as that of the

given problem. This is usually obtained using the expression

dδ

dx
= ε

(
1− r

1 + s1/2r

)1 + s1/2 − 1− s1/2

1 + 2.9

(
1 + r

1− r

)
 (3.2)

Where the value of ε is found to be between 0.27 to 0.45 [Slessor et al., 2000].

The scaled growth rate of all the cases are plotted in Fig 3.2. It can be

seen that the measured growth rate lies well within the band of experimental

results and demonstrates the distinct drop in the growth rate with increasing

Mc. A very important feature to notice is that the reduction in the growth

rate is being captured by LES. It has been known for a while that most RANS

simulations were unable to capture the effect of the growth rate reduction with

increase in the Mc. This problem is dealt with in greater detail in Chapter 5.

It is however very clear from the figure that LES is able to capture the effect.

It has also been claimed by Vreman [1995] through LES of temporal mixing

layers and Sankaran and Menon [2005] through LES of spatial mixing layer

that LES was indeed capable of predicting the lowered growth rates.

In the present simulations though neither artificial dissipation nor any

term dependent explicitly on the mixing layer has been added. This also goes

to show that the reason of the reduction of the mixing layer has to do with

the large scales, and not the large scales.

3.1.2 Self-Similarity

Self-similarity, in the present context, is the behaviour of the mixing layer

when the profiles collapse into being a function of a single variable η which is

a composite of x and y, rather than being functions of x and y independently.

In the case of a mixing layer, the velocity profiles, when scaled in the cross-

wise direction with a length proportional to the mixing layer width, collapse

into a single profile, which is close to a tanh function. In this section we shall

analyse the self-similarity behaviour of the velocity profiles.
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Figure 3.2: Growth rates variation with Mc in relation to experiments

[The star marks are the measured growth rates]

An example can be seen in Fig 3.3. In this we note that all curves after

x ≈ 0.10[m] have attained self-similarity. At this distance, it can be said that

a length scale ( the information of the distance from the splitter plate ) is lost,

or equivalently, the flow has no influence of the splitter plate.

The delay in the attainment of self similarity with increasing Mc was

observed by Pantano and Sarkar [2002], but for a temporal mixing layer for

which analysis of simplified equations lead to a reasoning for the behaviour.

Here we shall analyse a spatial mixing layer, instead of a temporal mixing layer.

The departure from the analysis of Pantano and Sarkar [2002] is explained after

the analysis.

The momentum thickness is a measure of loss of momentum in the mixing

process. It is the extra cross-wise height required (in both directions) to allow

the same flux of momentum as the initial flux. Mathematically
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Figure 3.3: Attainment of self-similarity

[The top figure indicates pictorially at which stream-wise location the measurement is

made. Notice that the tanh profile is almost attained after x ≈ 0.10[m]]

0ˆ

−H

ρ2U2U2dy+

Ĥ

0

ρ1U1U1dy =

Ĥ

−H

〈ρ〉 {u} {u}+
−Hˆ

−H−θ/2

〈ρ〉 {u} {u} dy+

H+θ/2ˆ

H

〈ρ〉 {u} {u} dy

(3.3)

Where H is an arbitrarily large distance from the mixing layer. This equation

simplifies to

θ =
1

1 + sr2

 0ˆ

−∞

(
sr2 − gf 2

)
dy +

0ˆ

∞

(
gf 2 − 1

)
dy

 (3.4)
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Where

g = g(y) =
ρ(y)

ρ1

f = f(y) =
u(y)

U1

It can be easily seen that as y → ±∞ both the integrands reduce to zero,

hence the integration converges. Next, taking the derivative of the above wrt

x, we get

θ′(x) =
1

1 + sr2

 0ˆ

−∞

−∂gf
2

∂x
dy +

0ˆ

∞

∂gf 2

∂x
dy

 (3.5)

With boundary layer approximation, we have

∂

∂x
〈ρ〉 {u} {u}+

∂

∂y
〈ρ〉 {u} {v} ≈ − ∂

∂y
{ρ} {u′′v′′} (3.6)

neglecting the x gradients as well as the viscous terms in comparison to the

turbulent stress for an order of magnitude estimate Integrating the cross-wise

direction, we have

ρ1U1U1

0ˆ

−∞

∂gf 2

∂x
dy ≈ (〈ρ〉R12)

∣∣∣∣
y=0

(3.7)

Hence

R12 ∼ U1U1θ
′ (3.8)

We now bring in the transformation from y to η as

η ≡ y

θ(x)
(3.9)

This implies that

∂

∂x
=
ηθ′

θ

d

dη
and

∂

∂y
=

1

θ

d

dη
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We also make scaling

〈ρ〉 = ρ1ρ̂(η) (3.10)

{u} = U1û(η) (3.11)

{v} = U1 (θ′)
n
v̂(η) (3.12)

R12 = U2
1 θ
′R̂12(η) (3.13)

Where all ·̂ represent functions of O(1) Substituting this in the continuity

equations we get

∂

∂x
〈ρ〉 {u}+

∂

∂y
〈ρ〉 {v} = 0 (3.14)

ρ1U1
ηθ′

θ

d

dη
ρ̂û+ ρ1U1 (θ′)

n 1

θ

d

dη
ρ̂v̂ = 0 (3.15)

We see that for consistency, we need n = 1, hence

{v} = U1θ
′v̂(η) (3.16)

Substituting this in the boundary layer equations with viscous terms we get

∂

∂x
〈ρ〉 {u} {u}+

∂

∂y
〈ρ〉 {u} {v} ≈ − ∂

∂y
{ρ}R12 +

∂

∂y
µ
∂u

∂y
(3.17)

ρ1U1U1
ηθ′

θ

d

dη
ρ̂ûû +ρ1U1U1θ

′1

θ

d

dη
ρ̂ûv̂

≈ −ρ1U1U1θ
′1

θ

d

dη
ρ̂R̂12 +

1

θ

d

dη
µ
∂u

∂y

(3.18)

We have the Reynolds number based on θ as

Reθ =
ρuθ

µ
=⇒ µ =

ρ1U1θ

Reθ
ρ̂û (3.19)

And an estimate of
u

y
is ∆U/δω where δω is the vorticity thickness For self-

similarity, it is required that the viscous terms become insignificant. Hence for

self-similarity,

ρ1U1U1
ηθ′

θ
� ρ1U1θ

θReθ

U1

δω
(3.20)
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Thus for self-similarity

E ≡ Reθ
θ

δω
θ′ � 1 (3.21)

The above derivation deviates from the derivation of Pantano and Sarkar

[2002] in that in the case of the latter, the equation considered is the tem-

poral mixing layer with a time derivative term in addition, but without the

stream-wise derivative. Furthermore instead of the spatial derivative of the

spatial mixing layer, the temporal mixing layer has a time derivative. Thus

the derivations progress on different lines.

Equation 3.21 shows that the to attain self-similarity E must be large

enough. When we have a closer look at E , we notice that for a given fluid with

the same fluid properties ( i.e. considering ρ,µ etc as constants)

E ∝ U1
θ(x)2

δω(x)
θ′(x) (3.22)

Thus it is clearly seen that lower the growth rate (hence lower the growth) the

distance required to attain self-similarity will be delayed. Hence, increasing Mc

is expected to delay the attainment of self-similarity.

Note that in the following sections, when we look at the influence of one of

the parameter out of Mc, r, s, and r, the other parameters are kept constant.

The procedure was described in Section 2.9

Influence of Mc on the attainment of self-similarity

Figure 3.4 shows the plot of the difference between scaled velocity profile

and the self-similar profile, as a function of the cross-wise distance scaled with

the width of the mixing layer. Each curve is a different Mc. The closer the

curve is to 0, one can say, that self-similarity has been attained to a greater

degree. At the shown, the flow having a greater Mc has a greater deviation from

self-similarity and it is seen that deviation from self-similarity shows a distinct

trend for being the least different from being self-similar for the lowest Mc case

to being farthest from being self-similar for the highest Mc case. Figure 3.5
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Figure 3.4: Difference in the average velocity profile, and the self-similar profile at a
particular distance for varying Mc

[Note that with increase in the Mc the deviation from self-similarity increases at the

same distance from the splitter plate]

shows the distance it takes for the difference in the self similar profile and the

actual profile, normalized with ∆U and δ to reduce till a prescribed percentage.

This even more clearly demonstrates that with increasing Mc attainment of

self similarity is delayed. This conclusively proves that with increase in the Mc

there is a delay in attaining the self-similarity. At distances further from the

splitter plate (not shown), the curves become indistinguishable since all have

more or less attained self-similarity. This trend of attaining self-similarity with

Mc has been observed in experiments by Samimy and Elliott [1990] for the

plane mixing layer.

Influence of r on self-similarity

We can at once see from Fig 3.6 that r has a strong influence on the attainment

of self-similarity. This is also reflected in the rate of removal of velocity deficit.

At a stream-wise distance of x = 0.05[m] none of the three profiles is
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Figure 3.5: Attainment of selft similarity profile

[Note that with increase in the Mc greater distance is required to attain self similarity ]
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Figure 3.6: Self-similarity collapse of {Ux} at a particular distance for varying r

[The lower r profile attains self-similarity the earliest]

self-similar. This is particularly indicated by the presence of a velocity deficit.

At a distance of x = 0.75[m] the flow with r = 0.75 still has not attained

self-similarity where as r = 0.65 has almost reached to the self-similar state.

Finally at x = 0.1[m] all three curves seem to have attained self-similarity.
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With increasing r at the same average velocity, the difference in the stream

velocities tends to decrease. This directly means that the gradient of the ve-

locity across the mixing layer is small. Hence the vorticity levels too tend to

be small with larger values of r. In the limit of r → 1 the mixing layer with

a splitter plate becomes the same as that of a wake flow behind the splitter,

where the velocity deficit may take a very long time to disappear.

Influence of Uavg and s on self-similarity
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Figure 3.7: Self-similarity collapse of {Ux} at a particular distance for varying Uavg

[There is hardly any change in the profile with increasing Uavg]

Figure 3.7 and Fig 3.8 show the non-dimensionalized velocity profile

with respect to the cross-wise coordinate scaled with the mixing layer width,

for varying Uavg and s respectively. It can be seen from Fig 3.7 that Uavg has

very little influence on the distance required to attain self-similarity. So much

so that when non dimensionalized the curves across the cases in fact coincide

to a large extent. Again, it is seen that the location where self-similarity is

attained is just after x = 0.08[m].

Similarly, Fig 3.8 shows that s too has a weak influence on the attainment

of self-similarity.
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Figure 3.8: Self-similarity collapse of {Ux} at a particular distance for varying s

[s has a small influence on the attainment of self-similarity ]

3.1.3 Velocity Deficit Removal

The wake of the splitter plate and the boundary layer over it cause the

formation of region of low velocity immediately after the splitter plate. The

mixing action and the accompanying momentum flux to this region eventually

removes the region of low velocity completely, as the flow proceeds further to

attain self-similarity. The removal of the velocity deficit depends on a number

of parameters including the thickness of the splitter plate, the local Reynold’s

number, other than the flow parameters. In the present study, the focus is on

the influence of the flow parameters for the same domain. In a flow without

any deficit, in the region far from the boundary layers developing at the walls,

the minimum velocity is the velocity of the secondary stream, U2.

Effect of Mc on the rate of removal of velocity deficit

Fig 3.9 shows the sole effect of Mc over the rate at which the velocity deficit

is removed. It is clearly seen that the initial portion closely follows the curve

Umin ∝ 1− a√
x

, shown in dotted line. In this region, the curves almost overlap

each other, showing that there is not much effect of Mc. At some point, each

curve switches to a higher rate of removal of the velocity deficit, and this region

is almost linear. The point at which this switch happens is clearly delayed by
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Figure 3.9: Variation of the removal rate of the Velocity

[Notice the initial part is same for all Mcs, and is close to the wake line ∝ 1− const√
x

(which is valid for x > 0.1 here). Later it switches to almost linear reduction. The

switching point is delayed and the rate of removal (shown as the slope of the linear

region) decreases with increase in Mc]

increase in Mc. The parabolic part of the removal, is basically identical to

that of a wake behind the splitter plate. It can be seen that the linear rate

begins at the point where the instability in the flow sets in. The fact that the

point of switching to the higher rate is delayed with increase in Mc indicates

that more the Mc, the more the delay for the instability to set in. Hence, this

clearly indicates that a higher Mc provides stability to the flow. Moreover, it

can be seen that the slope of the linear section of the curve distinctly decreases

with increased Mc (see Fig 3.10). The rate of removal of the velocity deficit is

proportional to the momentum diffusion present, which in turn is proportional

to the amplification rate of the instability. Hence an inference may be drawn

that the amplification rate of the instabilities decreases with increase in Mc.
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Figure 3.10: Variation of the velocity deficit removal rate in the linear region with
Mc

3.1.4 Coherent Structures

To identify the coherent structures Dubief and Delcayre [2000] recom-

mended the usage of the Q parameter. This parameter is calculated as

Q ≡ 1

4

(
ω2 − 2SijSij

)
(3.23)

It was shown that the Q parameter was capable of sharply marking the coher-

ent vortex structures, of the kind found in Kelvin Helmholtz instability.

The Q contours for two different cases are shown in Fig 3.11. The struc-

tures are very distinctly seen in this image, and all the more the evolution of

the structures from small size, merging and growth can be seen.

It can be clearly seen that as the Mc increases, the size of the structures

have definitely decreased. Since the growth of the mixing layer is directly re-

lated to the growth of these structures [Sandham and Reynolds, 1989], it can

be argued that the decrease in the growth rate is caused by the decrease in the

size of the structures.

It can also be seen that the increase in r has a similar effect, that the size

of the structures decrease, and hence lead to the decrease in the growth rate,

but this effect is the same as that in incompressible flows.

A distinctive advantage of the spatial simulation performed is the possibil-
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Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.250 100000000.0

|Q|[s−2]

Set 2 Case:6 Mc=0.55 Uavg=400.00[m/s] r=0.70 s=1.250 100000000.0

|Q|[s−2]

Set 2 Case:11 Mc=0.35 Uavg=400.00[m/s] r=0.75 s=1.250 100000000.0

|Q|[s−2]

Figure 3.11: Coherent Voritcal Structures

[The top figure is the central case. The middle figure the case with a higher Mc and

the bottom with a greater r. Notice the distinct decrease in the size of the coherent

vortical structures with increasing Mc]

ity of detection of the coherent structures and following which a host of further

calculations can be performed. For the detection of the structures, from the

simulations, the Q parameter was calculated. The contours of this parameter,

at a single suitable level was plotted. 1 A typical evolution of such a contour is

shown in Fig 3.12. Once the contours are obtained, the area, centers, the evo-

lution with time and other statistics can be calculated. The following analysis

were performed

• The area and center of area of the relevant contours were calculated,

• The time trace of each relevant contour was recorded,

1the Q parameter is such that the shapes of the contours is more or less same for a range
of threshold values. A value of 5× 108[SIunits] was found to be suitable for most cases
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Merger

Figure 3.12: Evolution of a structure

[Note: The merger of different structures (depicted by different colors), their growth

and splitting are all depicted. The contours are captured once every 4 time steps, and

plotted once every 20 time steps]

• The velocity of the contours was calculated,

• The mergers of contours and splitting of contours were detected.

Position of centers

The position of the centers of the contours is plotted against the physical

coordinates in Fig 3.13. This plot shows that most of the structures have the

center close to the centerline and the excursions away from the same are not

far, and are weakly dependent on the Mc.

It is apparent (admittedly not clear) that the excursions of a structure in

either streams have reduced in the case of the higher Mc. The excursions of the

contours away from the center, and the size of the contours both contribute to

the mixing and the growth rate. It is seen that the reduction of the excursions,

could be reflected as a reduction in the growth rate, if it is accompanied by a
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Figure 3.13: Trace of the centers of the structures top:Mc = 0.25 and bottom:Mc =
0.5

[Trace of the position is shows that apparently the higher Mc case has a lower spread

than that of higher Mc.]

decrease in the area. This is later shown to be true.
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Movement of the (center of) contours with time (Mc=0.25)

Figure 3.14: The time trace of a few contours at a lower Mc(0.25)

[The mergers and a few splits of the contours are clear ]

Time trace of the position of center Figure 3.14 shows the time trace

(t[s] vs x[m]) of a few contours. We can notice that the evolution of a structures

involves merging of several contours. While some mergers are artefact of the

contour setting, most are indeed genuine. Besides it is seen that most of the

lines are quite linear, indicating a constant velocity.

The x-position of the center of the contours with time at a higher Mc is

plotted in Fig 3.15. In each of the plots, the position of contours associated
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Figure 3.15: Time trace of contours at a higher Mc(0.55)

[Notice that the larger Mc case has a delayed merging as compared to the smaller MC ]

with 5 random traces is plotted. The fact that all the contours of a given trace

is plotted, means, this shows the merging and the splitting of the trace too.

Comparing the time-x trace plots of a higher Mc is plotted, in Fig 3.15,

it is apparent that the higher Mc has far more lines from the start and these

proceed to a large distance before merger happens than in the case of smaller

Mc. Hence we may draw the conclusion that the increase in the Mc delays the

merging of structures. The merging of structures is crucial in the process of

growth of structures, which is also indicated by linear stability analysis (eg

Sandham and Reynolds [1989]), though the delay in the merging phenomenon

cannot itself be predicted by the linear stability analysis.

Size of Structures

The size of the structure is indicative of the excursion of each of the stream

into the other. This in turn is indicative of the mixing process. It is hence,

useful to investigate the statistics of the size of the structures.

Figure 3.16 shows the average area of the contours versus the stream-

wise location. The average is conducted about a thousand contours. It can be

seen that

• The average growth rate of the areas of the lower Mc is almost linear
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Figure 3.16: Variation of Average Area with x

[The average area of the contours distinctly decreases with increase in Mc]

• The average growth rate of the different Mc cases is almost the same

initially

• The slopes of higher Mc is reduced, and higher the Mc greater the re-

duction

Shown in Fig 3.17 is the history of the area of the same contour shown

in Fig 3.12. This figure shows the importance of of mergers in the growth of a

structure. This figure shows that structures grow at vastly different rates. Some

even decrease in size. Many structures grow initially and saturate, and after

that merger of the structures cause an effective growth. This is very close to the

findings of linear stability analysis, which shows that after a certain growth,

the amplification factor becomes zero, after which merger of structures causes

a growth, and also allows it to grow further.
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Figure 3.17: Area history of a contour

[Note: It can be seen that mergers of contours contribute to the increase in the area

of a structure quite significantly]

Convective Velocities

2 The measurement of the convective velocity is very important, because this

is the foundation of many of the theory of the compressible mixing layer, and

is generally estimated through empirical relations. The incompressible value of

the velocity of the structures of the mixing layer involves the equalization of

the dynamic pressures on both sides of the stream in the frame of reference of

the structures [Dimotakis, 1984]. This yields

Uc
U1

≡ rc =
1 + rs1/2

1 + s1/2
(3.24)

For the compressible case Papamoschou and Roshko [1988] equated the

total pressures, assuming the stagnation to the frame of reference is isentropic.

2Note:in this table and the related discussion, σ refers to the standard deviation
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This yields for same γ of both streams

Uc =
a2U1 + U2a1

a1 + a2

(3.25)
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Figure 3.18: Velocity histogram

[Note that the top figure with lower Mc(0.25) shows a more skewed distribution of the

velocity, as compared to the lower figure which has a greater Mc(= 0.55), but roughly

the same σ. Also the theoretical velocity is about 396[m/s].]

Spatial simulations provide for the possibility of direct measurement of

the velocity of the coherent structures. The technique followed here is to find

the incremental position change in the position of the center of the contour

between consecutive iteration. This introduces an error of apparent movement

when the shape of the structure changes. This is found to have a component

of less than 5%. Also the iteration which involve splits or mergers, which
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result in a unphysical change in the position of the centers are ignored. The

distribution of the convective velocities of the structures is shown in Fig 3.18.

Similar measurements were made for all cases and the findings are summarized
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Figure 3.19: Variation of σ (Vc) with increasing Mc

[There is a decrease in the deviation of the velocities with increased Mc]

The present work shows that for all the cases, the measured convective

velocity is consistently lower than predicted by theory. Knowing that the range

of the possible values of rc is from r to 1, the measured rc is about 10–15%

lesser 3

This difference is perhaps due to the non-isentropicity of the flow due

to mixing, heat conduction, shear, or even due to the presence of shocklets.

However this difference has been quantified to be small in value. Also plotted

in Fig 3.19 is the standard deviation of the measured velocity with increasing

Mc. It can be seen that there is a clear trend of decreasing variation of velocity

with increasing Mc. This behaviour can be attributed to the fact that the

excursions of the structures far away from the centerline is decreased in the

higher Mc cases. This also is one of the contributing reasons for the decreased

rate of merging of structures, because, when there is a greater variation in the

velocities, there is a greater chance that the structures can merge with each

other.

3calculated as
rc − rcmeasured

1− r
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3.2 Mean Pressure Profiles

Turning the attention to the features of the mixing layer, which we can

infer from the pressure field, a typical mean pressure profile is show in Fig 3.20

The boundary condition on the splitter plate and the top and bottom

walls is that of no slip. This causes the formation of boundary layer. A slight

mismatch in the expected pressure profile, and the imposed profile gives rise to

the waves right at the inlet. This wave, however is quite weak and dies down

after a couple of reflections.

At the edge of the splitter plate a doublet of expansion and compression

wave is formed due to the turning of the flow on both sides. These two waves

propagate in either direction and are reflected by the walls. The boundary

layer on the walls attenuates these waves, and after two or three reflections,

these waves more or less die down.

The coherent structures convecting with the flow cause alternate increase

and decrease in the pressure. However it is seen that the average flow has a

decreased pressure in the region of the mixing layer. This decrease arises due

to the momentum balance in the region of turbulence.

Finally there is an increase in the over all pressure in the stream-wise

direction. This increase is mainly due to the boundary layer as will be discussed

in the following sections.

3.2.1 Mach disturbances from splitter plate

An important feature of the supersonic mixing layer is the presence of

the reflecting stationary waves caused mainly due to the splitter plate. These

waves have been reported in the experiments of Papamoschou and Roshko

[1988] (Fig 3.21)

The angle of the wave is the direct indicator of the prevailing Mach num-

ber in supersonic flows, and can be used to ascertain the Mach number. This

is often used by the experimentalists to measure the Mach number of the two

streams.

As shown in Fig 3.22 the angle measured is about 20◦ for the primary
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Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.255000 8000

p[Pa]

Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.255000 8000

〈p〉 [Pa]

Figure 3.20: Typical p, 〈p〉 profiles

[Notice the Mach and weak compression waves emanating from the splitter plate, and

reflecting on the walls, a distinct increase in the pressure in the stream-wise direction

and a lowered average pressure at the mixing layer ]

Figure 3.21: Schlieren from Experiments of Papamoschou and Roshko [1988] (top)
and Goebel and Dutton [1990b] (bottom)

[Notice the waves emerging from the edge of the splitter plate]

stream and about 32◦ for the secondary stream. This corresponds to Mach

numbers M1 ≈ 2.92 and M2 ≈ 1.88 which is close to the experimental value of

M1 = 3.1 and M2 = 1.7. As a cross verification of the simulation, in Fig 3.23

we draw the mach angles. This turns out to be at angles 25◦ and 33◦, which
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≈ 20◦

≈ 32◦

Figure 3.22: Measurement of the angles for an experiment of Papamoschou and
Roshko [1988]

corresponds to M1 = 2.3 and M2 = 1.8 which is close to the inlet Mach

conditions of M1 = 2.2 and M2 = 1.72. This also goes to show that the waves

are not strong oblique shocks. In the given conditions, the Mach number of

the flow perpendicular to the direction of the waves is very near unity.

Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.255000 8000

p[Pa]

≈ 25◦

≈ 33◦

Figure 3.23: Measurement of the angles for an experiment of Papamoschou and
Roshko [1988]

3.2.2 Pressure Deficit

When one observes the pressure distribution of the mixing layer, the re-

gion of mixing shows a clear indication of a reduction in pressure from the

mean stream profile. This deficit in the pressure in the region of the mixing

layer is a direct consequence of the momentum equation. The cross stream

momentum equation (for two dimensions) reads

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+
∂σxy
∂x

+
∂σyy
∂y

(3.26)
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For a statistically stationary flows, averaging yields

〈ρ〉 {u} ∂ {v}
∂x

+ 〈ρ〉 {v} ∂ {v}
∂y

= −∂ 〈p〉
∂y

+
∂Txy
∂x

+
∂Tyy
∂y

(3.27)

Where T is the sum of the viscous stress and the turbulent stress.

If we make the assumption now that {v} and
∂ {v}
∂y

are small, the balance

is simply

∂p

∂y
=
∂Txy
∂x

+
∂Tyy
∂y

(3.28)

Further neglecting the viscous part in comparison to the turbulent part

of the total stress, Tij ≈ −τij

Hence

p,y = −τiy,i (3.29)

We can now compare the two and see if we obtain a match between the

deficit of pressure and the divergence of the y components of turbulence stress.

Fig 3.24 shows this comparison. One can clearly see the absolute match

between the two curves, which proves beyond doubt that the pressure drop at

the centre of the mixing layer is purely due to turbulence, and that this drop is

totally accounted for.

3.2.3 Pressure Rise due to Boundary Layer and Mixing

We now look at the mean pressure profile in the stream-wise direction. A

typical pressure profile is shown in Fig 3.25

There can be two reasons for the rise in the pressure.

The Boundary Layer The boundary layers developing on the walls of the

chamber reduce the effective channel cross area available for the flow of

the mixing layer. This is reduction is the same as that of the displace-

ment thickness. A similar effect happens for the mixing layer, which, also

has a displacement thickness in the cross-wise direction. Hence a prac-

tical mixing layer domain with parallel walls having no slip boundary
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Figure 3.24: Pressure gradient compared with gradient of turbulent stress

[Notice the almost complete match between the two curves]

conditions is effectively like a convergent duct, which for a supersonic

flow acts as a diffuser, hence the rise in pressure.

The Mixing Process The mixing process itself results in the velocity profile

being more evened out. The total area of the curve under the ρu vs y

curve must be a constant to account for the mass conservation. Since

momentum is proportional to ρu2, there is a loss in the momentum,

which must be accounted for by an increase in the pressure.

The amount each one contributes to the total increase is investigated here.

To model the increase, we model the flow to be equivalent to two channel flows

as shown in Fig 3.26 A-priori we know the following parameters

• The effective areas are estimated from the velocity profiles, hence inlet

areas are known, the sum of the outlet area is known, individual areas

are not known
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Figure 3.25: Variation in the average pressure in the stream-wise direction

[The top part of the figure shows pictorially the cross-wise position at which the

corresponding measurement is taken.Notice the clear increase in the average pressure

at all stations along the cross direction]

Ap1

As1

Ap2

As2

Figure 3.26: Model for reduced area channel

[The effective blocked area due to mixing layer and due to the boundary layer ]
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• Inlet mach numbers are known and inlet pressure is known

The calculation of each of the outlet areas individually is iterative, where

we assume an effective outlet Mach number for each of the streams and calcu-

late the exit pressure p2 using Eqn 3.30 and exit area a2 using Eqn 3.31

p2

p1

=

1 +
(γ − 1)

2
M2

1

1 +
(γ − 1)

2
M2

2


( γ

γ − 1

)

(3.30)

A2

A1

=
M1

M2

1 +
γ − 1

2
M2

2

1 +
γ − 1

2
M2

1


 γ + 1

2 (γ − 1)


(3.31)

Iterations terminate when pressures on both streams match, and the total

area on the exit matches with the total effective area obtained from simulations.

To obtain the pressure gain due to momentum loss due to mixing, we simply

calculate the inlet momentum and the outlet momentum through integration

and the difference is the pressure gain due to mixing.

Mixing Layer1.4 %

Boundary Layer
89.3 %

Others
9.3 %

Contributors to pressure rise at x=0.31[m]
Set 2 Case:2 Mc=0.30 Uavg=400.00[m/s] r=0.70 s=1.25

Mixing Layer
8.2 %

Boundary Layer

65.0 %

Others

26.8 %

Contributors to pressure rise at x=0.31[m]
Set 2 Case:5 Mc=0.50 Uavg=400.00[m/s] r=0.70 s=1.25

Figure 3.27: Contributors to pressure rise

[The contribution of the boundary layer decreases with Mc]

A typical distribution of the pressure rise from two cases is shown in

Fig 3.27. It can be seen that more than 80% of the pressure rise is due to the

growth of the boundary layers, and only about 10% is from the spread of the
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velocity profile in the mixing layer. It can also be noted that the proportion of

the pressure rise due to the boundary layer is greater than in the case of lower

Mc.

3.3 Coherence in Fluctuations

This section presents the coherence amongst fluctuations of various pa-

rameters in the flow field. In course of analysis of the various parameters,

correlations between various parameters were studied. While studying these,

some interesting aspects were noticed which are presented in this section.

Firstly, from Fig 3.28 it can be seen that very early, the region of influence

of pressure reaches the walls. This implies that the ‘free stream’ is no longer

free from the influence of the mixing layer, and there is the presence of large

scale coherent pressure fluctuations. To be able to quantify this aspect and to

be able to see the influence of the same on the velocity field, the two point

correlation of the pressure fluctuation was calculated for every two points at

the same stream wise location.

Figure 3.29 shows the calculated two point correlations of the pressure

field. This plot indicates several features. To be able to explain the different

regions of the plot, consider Fig 3.30

Region A This region is the correlation of points very close to each other,

and hence it is expected to have a very large correlation, as is also seen.

Region B Near the mixing layer, the interaction of the two streams gives

rise to alternate compression and rarefaction. This region denotes points

within the region of mixing, and shows large correlation as high as 0.85.

It is rather interesting to note that this region develops earlier in the case

of higher Mc than in the case of lower Mc. This indicates that within the

mixing layer, greater correlation is found in the pressure fluctuations, for

a higher Mc case than a lower Mc case.

Region C This is the correlation of the near center region to the peripheral

point. This shows the least correlation.
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Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.255000 8000

p[Pa]

Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.25−100.0 600.0

Ux[ms−1]

Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.25−100.0 150.0

Uy[ms−1]

Figure 3.28: Pressure Contours (Top), Ux(Middle) and Uy(Bottom)

[The influence of pressure reaches the boundary earlier, and the influence is in the way

of columns]

Region D This region is the most unusual part,where points at symmetric

locations from the center show a large correlation, as high as 0.9. This

stem is found to be present in the case of lower Mc case much more

prominently than in the case of a higher MC case.

It must also be noted that at about 0.35[m] of the domain length, al-

most the entire cross-wise direction has a very large correlation of pressure

fluctuations (greater than 0.8 in the smaller Mc case and about 0.5 in the case

of larger Mc case). This clearly indicates the presence of large scale coherent

oscillations in the flow field. This coherent pressure fluctuations are expected

to have an influence on the velocity field by way of increasing the value of τxx.
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Figure 3.29: Pressure Cross Correlation for Mc = 0.25(top),and Mc = 0.55(bottom),
at x = 0.25[m](left) and x = 0.35[m](right)

[The area of the correlations increases significantly in the downstream direction. Also

note that in the high Mc case the region of influence of p is distinctly smaller than in

the case of lower Mc.]

3.3.1 Pressure Velocity Correlation

Is interesting to analyse the pressure velocity correlation, to see the inter-

dependence of the velocity and the pressure profiles. This correlation is shown

for the high Mc case and the low Mc case in Fig 3.31. This figure, brings out

an interesting fact that the pressure is strongly and positively positively cor-

related with the secondary side stream-wise velocity fluctuation and strongly

negatively correlated with the stream-wise velocity on the primary side. To

impress upon this point, Fig 3.28 shows the pressure contours, and the two
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Figure 3.30: Model of the shape of two point correlation of pressure

[A represents correlation between points nearby, throughout the domain,B represents

the correlation between points within the mixing layer, C represents correlation

between one point in the mixing layer and another outside, and D represents

correlation of two points on the opposite ends of the domain ]

components of the velocity profile. A heuristic model helps understand the cor-

relation more clearly. When the pressure and velocity are positively correlated,

pressure can be said to be driving the velocity. That is when an increase in the

pressure increases the velocity, and vice versa. When pressure and velocity are

negatively correlated, velocity (or momentum) can be said to build the pres-

sure. That is, a decrease in the velocity causes increases the pressure, and vice

versa. It is clear from the above correlations that velocity fluctuations drives

pressure fluctuations on the primary side, and vice versa on the secondary

side. This causes a momentum flux from the primary stream to the secondary

stream.
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Figure 3.31: p, Ux correlation

[The pressure is highly positively correlated with the secondary stream, and strongly

negatively correlated with the pressure on the primary stream]

3.3.2 Velocity Correlation

The above model also supports the velocity fluctuation correlations shown

in Fig 3.32. In the following discussion, the following notation is followed
+ +- +

- - + - to refer to the different regions of the plot. A few things which can be

inferred from the two point correlation plots of Fig 3.32

• The u′ − u′ correlation is large in the ++ and the -- regions of the

plot. This region represents the part of the fluid on the same side of

the mixing layer The fact that almost the entire quadrants have a large

correlation indicates that the regions move as coherent chunks. Note that
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Figure 3.32: Velocity component correlations

[Note the difference in the correlation forms for different components of velocities ]

this region of high correlation is outside the mixing layer. This shows that

the influence of the structures are felt almost throughout the cross-wise

direction.

• The u′−u′ correlation is strong and negative in the +- and the -+ regions.

This region represents the correlation of the opposite sides of the mixing

layer. The strong negative correlation indicates that the fluid on opposite

sides of the mixing layer have opposite direction of fluctuation. That is,

when the primary side fluid has a positive fluctuation, the secondary side

has a negative fluctuation. This, again, pertains to the region outside the

mixing layer.
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• The u′ − v′ correlation is quite small and seems larger in the positions

symmetrically apart, that is the +- and -+ regions.

• The v′−v′ correlation is large almost for the entire domain. It is especially

large for the same side of the mixing layer, that is ++ and the -- regions,

and around 0.6 for a large portion of the +- and the -+ regions.

The above goes to show that the effect of the structure formation in the

mixing layer is not restricted to the mixing layer alone, but extends to almost

the entire domain in the way of coherent oscillations. This feature is also seen

and explains experimental observations, like the one shown in Fig 3.33, where

the turbulence value does not go to zero even far from the mixing layer.

Figure 3.33: Figure of σuu from Goebel and Dutton [1990b]

[Note that the free stream values of the ]

3.4 Spectral Analysis

The evolution of the mixing layer involves the initial formation of the

instability. The amplitude of the instability waves gets magnified, and roll-

up occurs. This increases the physical size of the structure, and when these

structures merge, the size grows further. The coherent structures of a mixing

layer are the main source of mixing, and growth. The formation and evolution

of the structures is studied here from the point of view of spectrum analysis.
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3.4.1 Turbulent Energy Spectrum

The turbulent energy spectrum is the spectrum of energy content of tur-

bulent flows. This is the Fourier transform of the autocorrelation function Rij

defined for a statistically stationary flow as [Pope, 2000]

Rij(t;x, y, z) ≡ 〈u(T ;x, y, z)u(T + t;x, y, z)〉 T (3.32)

And the spectrum of the autocorrelation function is

R̂ij(ω;x, y, z) ≡ F(Rij(t;x, y, z)) (3.33)

The turbulence energy spectrum is now defined as, the half of contraction of

R̂, that is

E(ω;x, y, z) =
1

2
R̂ii(ω;x, y, z) (3.34)

We shall now see the effect the flow parameters have on the energy spec-

trum.

Effect of Mc

It can be seen from Fig 3.34 that the lower Mc case becomes unstable with

a higher energy than that at higher Mc. This clearly shows that the higher

Mc case is more stable than the lower Mc case, and it also indicates that the

production rates of in the case of lower Mc is higher. This also concurs with

finding that the lower Mc case recovers the velocity deficit earlier than the

higher Mc case, and this is clearly because of the larger amount of mixing

happening in the former.

It is also seen that the frequency of instability is higher in the case of the

higher Mc case. It must be noted that this is not in accordance to the linear

stability theory, which predicts a slightly lower frequency of peak amplification

for the higher Mc case.
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Figure 3.34: Energy Spectrum changes with Mc

[Close to the splitter plate, the frequency peak of the low Mc is much larger (about an

order of magnitude) than that of high Mc. Far from the splitter plate, the overall

energy content too is larger in the case of lower Mc than high Mc]

Effect of r

The effect of change in r as shown in Fig 3.35 is a reduction on the energy

with increasing r. It is of course expected to be the case because a smaller
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Figure 3.35: Energy Spectrum changes with r

[Increase in r causes an increase in the overall energy content of the flow ]

velocity ratio, directly means a greater gradients of velocity, which in turn

leads to greater production.

Effect of s

The effect of s shown in Fig 3.36 is even more dramatic. It is clear that

increase in the values of s clearly increases the energy content in the entire

spectrum. This matches with the predictions of linear stability analysis as well

as the incompressible prediction.
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Figure 3.36: Energy Spectrum changes with s

[Increase in s causes an increase in the overall energy content of the flow ]

3.5 Summary and conclusions

In this chapter interesting features of the mixing layers were studied. The

conclusions are:

• The growth rate of the mixing layer is measured, and is shown to be

smaller in the self similar regions for higher Mc, as observed in the ex-

periments.

• The dependence of attainment of self similarity on Mc is derived. It is

shown that the attainment of self similarity is delayed due to increase in

Mc, and that this is shown to be the case in the simulations. Further, it

is seen from the simulation that increase in r delays the attainment of

self similarity.

• It is clearly demonstrated that increase in Mc delays the removal of

velocity deficit. This is attributed to the stability of the mixing layer

being greater in the case of higher Mc.

• The coherent structures are captured from the simulations, and the evo-
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lution of the same studied. This yielded the conclusions that

– The coherent excursions of the coherent structures away from the

centerline is greater in the case of lower Mc than in the case of

higher Mc.

– Mergers and even splits are common in the evolution of a mixing

layer. Mergers increase the area of the structures, and this is a very

important part of the growth of the structures.

– The average area of the structures is shown to be reducing with the

increase in the Mc.

– The velocity of the structures were actually measured from the simu-

lations and were shown to be consistently about 10% to 15% smaller

than the predicted velocity from model of Dimotakis [1984].

– The velocity distribution about the mean showed significant skew-

ness preferential to the smaller velocity side in the case of low Mc.

In the case of higher Mc it is found to be symmetrically distributed.

• The mean pressure profiles show the following

– The waves emanating from the splitter plate. It is confirmed that

these are indeed weak waves, at an angle close to that of the Mach

angle.

– A pressure deficit exists in the mixing layer. This is shown to be

purely due to the turbulence.

– The pressure rise in the stream for a parallel side walls shows a

gain. This is largely accounted for, and is shown to be mostly due

to boundary layer growth.

• The mean pressure profiles show the following

– Two point correlations of pressure showed the presence of large

scale coherence even in the region away from the mixing layer. This

is shown to be due to bulk movements, not random turbulent move-

ments.
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– The region of coherent fluctuations is shown to be smaller in the case

of larger Mc. This is attributed to the smaller structures present.

– The pressure velocity correlations are strongly positive on the sec-

ondary side and strongly negative on the secondary side. The reason

for the same is discovered through a simple model of the structure,

and is confirmed with two point velocity correlations.

• The spectrum of the flow is analysed and showed that

– The increase in Mc reduces significantly the energy content of the

instability, and hence shows that mixing layers with greater Mc are

indeed more stable.

– The increase in r, as expected, shows a decreased energy content of

the most unstable modes.

– Increase in s increases the energy of turbulence, as predicted by the

linear stability theory as well as the incompressible theory.

This chapter thus leads the way for a more detailed analysis of the turbu-

lence budgeting, but with cases where the average pressure gradient is main-

tained through divergence of the walls appropriately.
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Chapter 4

Evolution of Turbulent Stresses

4.1 Introduction

The previous chapter dealt with the features of the mixing layer, some

related to the mean profiles, and other more intricate quantities. As a step

further, this chapter deals exclusively with the evolution of the evolution of

turbulent stresses to be able to trace their transactions.

Writing the turbulent stresses in a conservative form, one can obtain

the equation of the turbulence stress, which involves the production and the

dissipation terms. A study of these terms is expected the reason for the changes

in the turbulence levels with increase in Mc. The formulation of the problem

is first carried out in Sect 4.2.

It is also noticed that the turbulence levels in the stream are influenced

by the mean flow conditions. The development of the boundary layer has been

shown to be the primary reason for the domain with parallel top and bottom

surfaces to act as a diffuser, and cause an increase in the pressure and a

decrease in the velocity. This changes the free stream conditions, affecting the

shear. To correct this problem, the domain is modified with a slight divergence

to compensate for the displacement thickness of the boundary layers. This is

discussed in Section 4.3.

The Sect 4.4 presents the findings regarding the factors influencing the

different components of the turbulence stresses. This traces the behaviour of

the total sources of the shear stresses, where as Sect 4.5 deals with the com-

ponents of each of the sources, to determine which particular component has

an influence of Mc. Finally Sect 4.6 discusses the effect of the particular
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pressure-strain term.

4.2 Kinetic energy Budget

The fact that the turbulence level decreases with Mc leads to the obvi-

ous search for the cause for this decrease. To investigate this, the evolution

equation of the turbulent kinetic energy is derived, and the source terms are

identified. To do this the mechanical energy equation is subtracted from the to-

tal kinetic energy equation. After substantial simplifications and mathematical

manipulations ( see Appendix A.3 on Page186 ). The final equation obtained

is

〈ρ〉
{
〈D〉Rij

〈D〉 t
+Dij

}
= Σij +Bij − πij +XDiss

ij +
2

3
δij 〈p′uk,k ′′〉︸ ︷︷ ︸

Source Terms

(4.1)

Where

〈D〉
〈D〉 t

≡ ∂

∂t
+ {Ul}

∂

∂xl
(4.2)

Rij = {ui′′uj ′′} (4.3)

Dij =
1

〈ρ〉
∂

∂xl

(
τijk +

2

3
δij 〈p′ul′′〉 −XDiff

ij

)
(4.4)

τijk = 〈ρ〉 {ui′′uj ′′uk ′′} (4.5)

τij = 〈ρ〉 {ui′′uj ′′} (4.6)

XDiff

ij = (〈ui′′σjl〉+ 〈uj ′′σil〉) (4.7)

Σij = −τjl {Ui,l} − τil {Uj,l} (4.8)

Bij = − (〈p,j〉 〈ui′′〉+ 〈p,i〉 〈uj ′′〉) (4.9)

πij = Πij −
1

3
δijΠll (4.10)

Πij = 〈p,j ′ui′′〉+ 〈p,i′uj ′′〉 (4.11)

XDiss

ij = − (〈ui,l′′σjl〉+ 〈uj,l′′σil〉) (4.12)

The terms above are identified in Table 4.1
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Term Significance

Rij The velocity correlation
Dij Diffusion of turbulence
τijk Triple correlation (density weighed)
τij Turbulent correlation
XDiff
ij Turbulence diffusion due to viscosity

Σij Production
Bij Mean Pressure Velocity fluctuation coupling
πij Fluctuation of pressure and velocity coupling
XDiff
ij Dissipation

p′u′′kk Pressure dilatation coupling

Table 4.1: Terms in the Turbulence evolution equation

4.2.1 Other equivalent derivations

We shall discuss some other forms of the derivation by other authors.

Neglecting the large scale viscosity

Under certain conditions, the large scale viscous effects can be neglected, hence

{u},i ≈ 0

This results in the approximations as made by Canuto [1997]

XDiff
ij = (〈ui′′σjl〉+ 〈uj ′′σil〉),l ≈ (〈Uiσjl〉+ 〈Ujσil〉),l (4.13)

XDiss
ij = − (〈ui,l′′σlj〉+ 〈uj,l′′σli〉) ≈ − (〈Ui,lσlj〉+ 〈Uj,lσli〉) (4.14)
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Not splitting p′

Another variation of the τij equation is found in some literature, for example

Pantano and Sarkar [2002]. This formulation differs from Eqn A.42 as

〈FiUj〉 − 〈Fi〉 {Uj} = 〈Fiuj ′′〉 = 〈(−p,i + σil,l) uj
′′〉

= −〈p,i〉 〈uj ′′〉 − 〈p,i′uj ′′〉+ 〈σil,luj ′′〉
= −〈p,i〉 〈uj ′′〉 − 〈p′uj ′′〉 ,i + 〈p′uj,i′′〉+ 〈σil,luj ′′〉

(4.15)

Further, the term 〈σjl,lui′′〉 is decomposed as

〈σjl,lui′′〉 = 〈(〈σjl,l〉+ σjl,l
′) ui

′′〉
= 〈σjl,l〉 〈ui′′〉+ 〈σjl,l′ui′′〉
= 〈σjl,l〉 〈ui′′〉+

〈
σ′jlui

′′〉
,l −

〈
σ′jlui,l

′′〉 (4.16)

And similarly

〈σil,luj ′′〉 = 〈σil,l〉 〈uj ′′〉+ 〈σ′iluj ′′〉 ,l − 〈σ′iluj,l′′〉 (4.17)

The diffusion terms are collected as

Tijl =
(
τijl + 〈p′uj ′′〉 δil + 〈p′ui′′〉 δjl −

〈
σ′jlui

′′〉− 〈σ′iluj ′′〉) (4.18)

Thus Eqn A.39 becomes

〈D〉 τij
〈D〉 t

+ Tijl,l = Σij −
〈
σ′jlui,l

′′〉− 〈σ′iluj,l′′〉︸ ︷︷ ︸
ε

+ 〈p′ (uj,i′′ + ui,j
′′)〉︸ ︷︷ ︸

Ψ

+ (〈σjl,l〉 − 〈p,j〉) 〈ui′′〉+ (〈σil,l〉 − 〈p,i〉) 〈uj ′′〉︸ ︷︷ ︸
Φ

(4.19)

Where the terms Σ, Ψ and Φ the respectively labelled as P , Φ and Σ of

Pantano and Sarkar [2002]
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4.3 Domain for analysis

It was seen in the previous chapter that the development of the boundary

layer reduces the effective area for the stream. This is sought to be corrected in

the current set of experiments by making the top and the bottom walls slightly

divergent, just enough to compensate for the reduction in the flow area due to

the boundary layer. Though we have an estimate of how much the walls are to

be diverged to be able to remove the pressure gradient, it was found that this

approximation removed only a part of the pressure gradient.

In the present case, the (almost) zero pressure gradient was attained

through iterations of modifying the divergence angle and measurement of the

pressure gradient after two sweeps of the flow. The divergence of the plates

cannot be from the inlet itself, because that will give rise to unrealistic expan-

sion fans right at the inlet zone. The divergence also cannot be done in a way

that it creates a sudden change of angle, because even then it will give rise to

expansion fans into the domain. Hence, the domain was diverged through a

smooth arc with a large radius of curvature, as shown below.

R = 0.5m

θ = 10◦

θ
=

10
◦

Note that the figure above shows the angle of divergence of 10◦ only for

clarity, whereas in reality the angle was found to vary from 0.125◦ to 0.3◦

The effect of this divergence is shown in Fig 4.1, where it is clearly seen

that most of the pressure gradient has been mitigated using divergence of the

side walls. Similar pressure distribution is created in almost all the cases in

this set of experiments.
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Figure 4.1: Pressure variation in the modified domain

[Note that stream-wise pressure gradient is almost zero]

4.4 Integral Source terms for Turbulent Quantities

In the study of the turbulent quantities, it is often better to discuss in

terms of the quantities integrated in the cross wise direction. An integration

in the cross stream direction eliminates the transport term, in the case of

turbulent quantities if we assume a largely turbulence free stream conditions

away from the mixing layer. The transport term results only in a redistribution

of the parameter under study, and does not modify the total content of the

parameter. In the case of temporal mixing layers, usually a similar integration

is performed in the self similar coordinate, which is analogous to y (example

Pantano and Sarkar [2002], Vreman [1995]).

The integral term of any turbulent parameter at a stream-wise location

stations may be thought of as a measure of the total content of that quantity

crossing that section. Furthermore, the difference in its value at two stream-
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wise stations must be the sum effect of the source terms present between the

stations.

4.4.1 Diagonal component

The total source terms for all the cases of the diagonal components are

shown in Fig 4.2. The plots are non-dimensionalized with the average density

and the velocity difference.
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Figure 4.2: Source of symmetric components changes across Mc

[Left:the xx component, Right: the yy. Note that the delay and the decrease in the

growth in the source terms with increasing Mc]

The following observation can be made from the plots

• It is seen that increasing Mc causes a delay in the growth of the source

terms, that is, the greater the value of Mc the greater is the distance at

which the source terms start growing. This is true for all the components.

That the stability of the flow increases with Mc is clearly seen, because

the amplification of the turbulence occurs later in the flow in the case

where the flow has a greater Mc.

• The magnitude of the source terms decreases with the increasing Mc.

This further goes to explain the reduction in the growth rate.

The effect of this difference in the source term is directly seen in the values
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of the turbulent quantities along the stream wise direction. This is plotted in

Fig 4.3.
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Figure 4.3: Variation of τxx and τyy with x for different Mcs along the centerline

[There is a tendency to decrease in the value of non-dimensionalized τxx and a clear

trend of decrease in τyy with increase in Mc]

A very similar result was obtained by the experiments of Goebel and

Dutton [1990a], which shows a clear trend of decrease of non-dimensionalized

τyy with increase in Mc and no clear trend of decrease in τxx with Mc. Elliott

and Samimy [1990] found decreasing trend in both the τxx as well as the τyy

components in experiments with increasing Mc.

4.4.2 Shear component

The shear component is related directly to the growth rate and hence has

relevance in the mechanics of the decrease in the growth rate with increasing

Mc. The normalized source term for the shear component is plotted in Fig 4.4

The influence of this can be directly seen on the value of τxy plotted along

the centerline, in Fig 4.5. To clearly see the effect of the latter on the growth

of the mixing layer, Fig 4.5 also shows the measured value of δ which is scaled

to remove the effects of r and s.

• There is a decrease and a delay in the value of the source terms for τxy
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Figure 4.4: Normalized Shear component of the Source

[The delay and the reduction in the value of the source is apparent]
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Figure 4.5: Normalized shear stress and growth rates

[The left side presents τxy vs x at y = 0 and the right side presents the growth rates

are scaled to remove the effect of r, and s. A clear trend is seen of decrease of τxy
corresponding to a decrease in δ]

with increasing Mc

• This trend in the profile of source of τxy is clearly reflected in the actual
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value of τxy at the centerline

• The growth pattern matches with the pattern of the turbulence source,

especially the shear mode, in which it is seen that the growth rate is

greater in the region of larger source of τ

• It is also seen that the effect of the increasing Mc is seen in the reduced

growth rate but more importantly of the delayed growth. The decreased

growth (in contrast to the growth rate) is of a greater importance for

combustion applications, and this seems to be drastically smaller in the

case of higher Mcs.

It is quite interesting to note the trend of each of the components of the

source term, that is Σ, B, π and Xdiss. This is done in the following section.

4.5 The components of the source term

4.5.1 Symmetric components

The production term Σ

First we shall have a look at the production term of the symmetric components.

The following observations are made

• It is clearly seen from Fig 4.6 that the production term for τxx decreases

with increasing Mc. It is also clear that there is a delay in the distance

it takes for the production term to rise. Both these contribute to the

increased stability of the flow.

• The production of the τyy component however does not show much of a

trend, as far as the magnitude is concerned. However, a delay is definitely

seen in the start of increase of the production rise. It is also seen that

this component is of a relatively much small magnitude.

From the definition Σij is proportional to the product of the prevalent

gradient of velocity and the turbulence present. The most dominant velocity
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gradient is the gradient of the stream-wise velocity in the cross stream di-

rection, and this gives the large production of energy of the flow in the xx

direction. On the other hand, the cross-wise direction velocity is small, and

hence the large difference in the magnitudes is expected.
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Figure 4.6: Symmetric components of production term, and its changes with Mc

[Note that the delay and reduced magnitude in the growth of the production term with

increasing Mc]

The pressure - velocity correlation terms

It can be seen from Fig 4.7 that the pressure strain term (πxy) is positive in

the xx direction and negative in the yy direction. Since π is a negative source

in the evolution equation (Eqn A.56), it acts as a sink of energy from the xx

direction, and adds this energy to the yy component. As one can see, the values

if πxx and πyy are equal and opposite. This pressure strain term is hence the

main source of energy for the yy direction, which itself lacks the production.

Thus, in summary, as depicted in Fig 4.8, it is seen that with the increase

in the Mc, the production term decreases in the xx direction, which leads to a

decrease in the source of τxx and the pressure strain term decreases causing a

decrease in the source of τyy.

Shown in Fig 4.9 is the figure extracted from Pantano and Sarkar [2002].

This is the result of a temporal mixing layer, which shows that the production
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Figure 4.7: The pressure strain term

[The pressure strain term (left) is positive in the xx direction(top) and negative in the

yy direction(bottom). Also the magnitude decreases with increase in the Mc]

terms being smaller for higher Mc values at a given instant. It can be seen that

the current simulations agree with the findings, that the increase in the value

of Mc cause a distinct decrease in the value of Σ.

The unscaled values shows a large value for Σxy even for high Mc because

higher Mc is also accompanied by an increase in the difference in the velocities.

This is compounded by a smaller δ which in effect causes a large increase in

the gradients across the mixing layer.

Sarkar [1995] has attributed the stabilizing effect wholly to the production

term, whereas Pantano and Sarkar [2002] acknowledge the difference caused by

the pressure strain terms also. The current work supports the latter viewpoint

from the point that the pressure strain terms and the production terms are

of similar order of magnitude and both show increased stability at higher Mc
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Figure 4.8: Flow of Energy in the TKE Equation

[The widths are proportional to the peak values]

Figure 4.9: Production terms in Pantano and Sarkar [2002]

[Extracted from Pantano and Sarkar [2002]]

values.
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The dissipation term

The dissipation term, plotted in the Fig 4.10, shows that the magnitude is

much smaller than the pressure velocity term and the production term, and

that its magnitude decreases (in the negative sense) with increasing Mc.
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Figure 4.10: The dissipation term

[The dissiaption is of a much lower value than the other major term, and it generally

shows a greater dissipation for smaller Mc]

This is not in line with the findings of Pantano and Sarkar [2002], who

found no trend, in the dissipation.

4.5.2 Asymmetric component

Figure 4.11 shows the different components of the source of the shear

(τxy) component.It can be seen without doubt that the increase in the values

of Mc result in decrease in the production term scaled with the average density

and the velocity difference.

• The decrease in the source of production with increasing Mc is very

pronounced

• The point of start of increase of production is delayed in the case of high

Mc
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Figure 4.11: Components of the source term in the xy direction

Pressure-Velocity terms π and B

It can be seen from Fig 4.11 that

• πxy is of an order similar to that of Σxy, where as B is of a smaller

magnitude.
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• However, the magnitude of B is similar to Σ − π hence it cannot be

neglected as it was done in the case of the xx and the yy components.

• Both B and π shows an increased stability with increasing Mc.

• It can be seen that the dissipation is much smaller in magnitude than

the other terms. Hence it can be concluded to be having a minimal, if

any, effect on the stability of the mixing layer.

4.6 The significance of the pressure strain term

The source of the Π term has

〈
p,jui

′′′〉 = 〈p′ui′′〉 ,j −
〈
p′ui

′′
,j

〉
(4.20)

The first term on the RHS is a diffusion term and can be taken on the LHS of

the evolution equation of τij, however the second term is the pressure strain

term.

We have seen in Sect 4.5.1 that the π term plays a very important role

in the transfer of energy from the τxx equation to the τyy equation, and that

this is the main source of the turbulence in the τyy direction, being negative in

the xx equation and positive by almost the same amount in the yy equation.

This is one of the main reason for RANS turbulence models based on k (

like the k− ε or the k− ω models ) to not to be able to capture the reduction

in the growth rate.

However, it can be seen that when we compute the trace of this term, it

reduces to 〈p′∇u′′〉. This term is very small because being positive and negative

of roughly the same amount in the xx and the yy directions. Thus the turbulent

kinetic energy (k) equation has no means to capture this influence.

4.7 Conclusions

In this chapter, the root cause for the decrease in the turbulent quantities

was sought out for, by the analysis and the careful calculation of each of
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the source terms in the evolution equation of the turbulent quantities. It is

concluded that the production term is the dominant source in the case of the

xx component, where as a substantial part of the energy is carried over by the

pressure strain term π to the yy direction. Both these terms tend to decrease

with increasing Mc, and hence both components show a decreasing trend with

increasing Mc.

In the shear component too a strong trend of decrease in the production

term with increase in Mc is seen, a similar increase in the π term decreases the

effect of Mc, and makes the values similar in magnitude to the mean pressure-

velocity fluctuation term B. Overall, even for this component, a decrease in

the source is seen with increasing Mc which shows the reason for the increased

stability with increase in Mc.
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Chapter 5

RANS Modelling

5.1 Introduction

In the previous chapter, a detailed description of how the measures of

turbulence vary with Mc was presented. LES has an advantage of being able

to simulate most of the momentum, energy, and species carrying large scale

eddies which do most of the turbulent mixing, and as seen in the previous

chapters, LES has been successful in predicting most of the features of the

mixing layers, measured experimentally as well as those observed in previous

DNS simulations.

However, LES computation is computationally more intensive to qualify

as a development tool. It is therefore thought appropriate to evolve a simpler

computational tool based on RANS to enable faster and accurate calculations

to help system development.

RANS simulations are generally conducted on a much coarser grid as well

as much larger time steps, and a possibility of mimicking the behaviour in

RANS would be a very useful development tool.

It was realized from Sect 4.6 that RANS simulations which have the

turbulence modelling based on k are ill poised to predict the growth rate re-

duction effect of a compressible mixing layer. A more detailed description of

the same is presented in Sect 5.2. Besides, in problems involving heat and

mass transfer, it is customary to invoke the Reynold’s analogy for turbulent

flows, and defining constants Prt (turbulent Prandtl number) and Sct (tur-

bulent Schmidt number), analogous to their laminar counterparts, and solve

the respective evolution equations with this assumption. It is however neither

144



certain, nor necessary for the Prt and Sct to be constants, which is the usual

assumption.

5.2 The possibilities

RANS refers to generic Reynold’s Averaged Navier Stokes equation. When

the averaging is thought of as a time average, it yields the Steady-State RANS

usually called S-RANS, and when the average means ensemble average, it leads

to an unsteady, time-accurate solutions known as Unsteady-RANS or URANS.

Bardina et al. [1997] presents an excellent classification of the existing

turbulence models. The basic classification of the turbulence models is as

Reynolds Stress Models Which model directly the Reynolds Stress. These

set of models require to model each component of the stress tensor. Most

often this involves solving additional convective equations equal to the

number of components.

Algebraic Models These are also called zero equation models, which relate

the shear stress to the mean flow parameters with an algebraic equation.

Eddy Viscosity Models This group of models model the eddy viscosity, a

scalar, which relates the stress tensor to the strain tensor. Most often this

estimation requires solving a single convective equation (one equation

models), or two convective equations (two equation models). Prominent

examples being the k−ε model, the k−ω model. These have a reputation

of being robust, and have been widely used.

Launder et al. [1972] had shown that the classical k − ε model shows a

greater spreading rate than what is expected. Figure 5.1 from Bardina et al.

[1997] shows that none of the classical models are able to capture the reduced

growth rate effect.
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Figure 5.1: Performance of classical turbulence models from Bardina et al. [1997]

[None of the classical models are able to capture the reduced growth rate effect with

increasing Mc]

The equation for the turbulent kinetic energy (k) involves taking a trace

of Eqn A.56. This process leads to

〈ρ〉
{
〈D〉 k
〈D〉 t

+Dxx +Dyy

}
= (Σxx + Σyy) + (Bxx +Byy)

− (πxx + πyy)︸ ︷︷ ︸
=0

+(XDiss
ij ) + 2

3
δij 〈p′uk,k ′′〉

(5.1)

The third term on RHS (πij), was found in the LES analysis, to be a very

significant term in both the τxx equation, appearing as a sink, as well as τyy

equation, appearing as a source. It was shown that the values of both these

are quite close in magnitude. This term which (along with Σxx) decreases with

Mc. This has also been the finding of Vreman et al. [1996] and Pantano and

Sarkar [2002] that this term provided an anisotropic effect which allowed the

energy transport from the stream-wise to the cross-wise direction. However,

when a trace is taken of the τ equation, it leads to the nullification of the π

term itself. This implies that the anisotropy arising out of the pressure velocity

correlation is lost in the process.

Thus calculation of k implies the loss of information of this pressure ve-

locity relation. Many methods were suggested to correct this problem, most of
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which were aimed at decreasing the turbulent kinetic energy by increasing the

dilatation dissipation ( [Sarkar et al., 1991b], [Zeman, 1990]). This approach

was however found to be incorrect by Sarkar [1995] who found that it was

the production term and not the dissipation which decreases with increased

Mc. But in the present work, XDiss
ij was found to have a small influence. It has

also been confirmed by Pantano and Sarkar [2002], who too found not much

of a trend for dissipation with Mc. Hence any technique intending to correct

k using modification to the dissipation term is bound to be flawed in physics.

Wilcox [1998] too has found that this technique is flawed.

The possibility of this feature to be incorporated in any RANS model

based on an isotropic µt has no possibility of introducing the effect of anisotropy.

In the present work, however as new and a rather simpler approach is pre-

sented. We first find the most important terms to be modelled for obtaining

the growth rate, and then model that with the help of results of LES.

5.3 Terms contributing to the momentum equation

To be able to model the stresses, it is necessary to know, which term is

the most significant contributer to the respective momentum equations. This

is done using the results obtained using LES. But before that, which term is

important can be immediately estimated using a simple integral analysis.

5.3.1 Integral analysis

In Appendix A.4 on Page193 integration of the momentum equation is

provided, and this analysis connects the growth rate to the integrals of the

mean flow and the shear stress which is

δ′


0́

−∞
fg(g − r)dη +

∞́

0

fg(1− g)dη

+
0́

−∞

(
〈p〉 − p∞ − Txx

)
dη −

∞́

0

(
〈p〉 − p∞ − Txx

)
dη


= 2y′0

(
〈p0〉 − p∞ − Txx0

)
+ 2Txy0 (5.2)
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where,

f(η) = 〈ρ〉(x, y) (5.3)

g(η) = {u}(x, y) (5.4)

h(η) = {v}(x, y) (5.5)

and · representing the non-dimensionalized variables with respect to the pri-

mary stream variables.

Which on neglecting the pressure terms and y′0 yields

δ′

 0ˆ

−∞

fg(g − r)dη +

∞̂

0

fg(1− g)dη

 = 2Txy0 (5.6)

Where

Txy ≡

(
〈τxy〉 − 〈ρ〉 {u′′v′′}

)
ρ1U2

1

(5.7)

and the Txy0 = Txy(y = 0)

In the derivation of the above expression, assumption of the pressure

terms and the mixing layer not bending in any direction. So as to check how

valid are the assumptions made, the growth rate calculated by the integral

analysis and that from actual data were compared. This is shown in Fig 5.2,

which shows that the error in the predicted values reduces to below 10% when

the self similarity is attained. This shows that the assumptions are quite valid.

It was verified that the integrals on the LHS do not vary much, and are

more or less dependent only on r and s in the self similar region. The integral

analysis clearly leads to the fact that the most important term to the growth

rate measurement is Txy which is directly related to τxy. This particular aspect

5.3.2 The Contributing Terms in the stream-wise momen-

tum equation

First, looking at the xmomentum equation, we have the relevant Reynolds

stress terms are τxx and τxy. τxx at a location close to the splitter plate and
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Figure 5.2: Growth rate predicted by integral analysis

[Notice the regions used for integration and the close match between the measured

and the expected growth rates in the self similar region]

at a location far away is shown in Fig 5.3. Similar plots for τxy is shown

in Fig 5.4. It can be seen that both of these terms, are of the same order.

However what matters more is the actual source in the momentum equation,

where it is the cross-wise gradient of τxy and the stream-wise gradient of τxx

which are present. The relative importance of the quantities can be estimated

only through the comparison of this term, which is plotted in Fig 5.5.

It is clear from Fig 5.5 that the contribution of τxy is an order greater

than that of τxx. This is, of course, not unexpected that this represents the tur-

bulent stresses which transport the most significant momentum in the direction

perpendicular, and hence can be expected to be of a greater magnitude. Fur-

ther, more, momentum mixing in a mixing layer, and the subsequent growth

rate of the mixing layer, occurs mainly due to this component. It may hence
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Figure 5.3: τxx variation in the cross-wise direction

[Left: Typical τxx near the splitter plate, and Right: at a larger distance downstream]
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Figure 5.4: Contributing terms of τxy
[Left: Typical τxy near the splitter plate, and Right: at a larger distance downstream]

be said that it is the most important to model τxy accurately.

5.3.3 The Contributing Terms in the cross direction mo-

mentum equation

An examination of the y momentum equation indicates that the relevant

Reynolds stress terms are τyy and τyx.

τyy at a location close to the splitter plate and at a location far away is

shown in Fig 5.6. τ being a symmetric tensor,the observation is the same for

τyx as that of τxy. As it can be seen, τyy is larger than τxy, however it is of the
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Figure 5.5: Relative contribution of τxx and τxy to the momentum equation both
near as well as downstream the splitter plate

[The contribution of τxy is about and order greater than that of τyy]
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Figure 5.6: τyy variation in the cross-wise direction

[Left: Typical τxx near the splitter plate, and Right: at a larger distance downstream]
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same order. As before, the contribution to the cross-wise momentum transport

is of a greater interest and in that the source terms appear as the cross-wise

gradient of τyy and the stream-wise gradient of τxy. This is plotted in Fig 5.7

−3 −2 −1 0 1 2 3
∂τyy/∂y ×104

−15

−10

−5

0

5

10

15

y
[m
m

]

at x = 0.10[m]

Mc = 0.35

Mc = 0.40

Mc = 0.45

Mc = 0.50

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2
∂τxy/∂x ×103

−15

−10

−5

0

5

10

15

y
[m
m

]

at x = 0.10[m]

Mc = 0.35

Mc = 0.40

Mc = 0.45

Mc = 0.50

−1.0 −0.5 0.0 0.5 1.0 1.5
∂τyy/∂y ×105

−15

−10

−5

0

5

10

15

y
[m
m

]

at x = 0.27[m]

Mc = 0.35

Mc = 0.40

Mc = 0.45

Mc = 0.50

−1.2−1.0−0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6
∂τxy/∂x ×103

−15

−10

−5

0

5

10

15
y

[m
m

]
at x = 0.27[m]

Mc = 0.35

Mc = 0.40

Mc = 0.45

Mc = 0.50

Figure 5.7: Relative contribution of τyy and τyx to the y momentum equation both
near as well as downstream the splitter plate

[The contribution of τyy is about an order greater than that of τyx in the y momentum

equation]

It is clear from Fig 5.7 that the contribution of τyy is an order greater

than that of τyx. And for RANS simulations it is of a greater importance to

model τyy as accurately as possible for the cross-wise momentum equation.

However, this term does not directly influence the growth rate, and it is the

transport of the non-dominant direction of momentum. Hence the importance

of this term cannot be expected to be the same as that of τxy.

It is thus clear from the above section that the most important parameter

for modelling is τxy and this is followed by τyy.
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5.4 Modelling of τxy and τyy

5.4.1 Modelling of τxy

The aim of this section is to express τxy as a function of some mean prop-

erty. The logical choice of such a property is Sxy, taking inspiration from the

Prantl’s mixing length hypothesis. This can be seen qualitatively in Fig 5.8.
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Figure 5.8: τxy and Sxy at the same stream-wise location

[τxy profile resembles −Sxy]

At once, we can express the relation in terms of non-dimensional param-

eters as

τxy
ρ̄(∆U)2

= L
Sxy

(∆U)/x
where ∆U is U1 − U2 and ρ̄ is

ρ1 + ρ2

2
(5.8)

The above scaling is expected to yield simpler formulation because, it is known

that under self similar conditions, τxy becomes almost a constant, where as Sxy

linearly decreases with x. Under such conditions, L is expected to be more or

less independent of x, however that needs to be verified. Recognizing that Sxy

can be made scale invariant with the mixing layer thickness and an appropriate

velocity scale ∆U , non-dimensionalized quantity Sxy/(∆U)/x was chosen after

noting that x is the independent variable on which δ depends strongly. This is

shown in Fig 5.9.

Similarly, with increasing Mc the behaviour of the τxy vs Sxy plot is shown

in figure Fig 5.10 which shows without doubt that the shear stress in the

region of self similarity at least, at all Mcs can be very well approximated by
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Figure 5.9: Variation of τxy with Sxy at various stream-wise locations

[Note: The plot forms loops with the axis more or less oriented in a single direction

except for very small x]

a straight line.
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Figure 5.10: Variation of τxy vs Sxy at different Mc values

[The slope clearly decreases with Mc indicating a decreasing L in Eqn 5.8 ]

This also implies the slope of the τxy vs Sxy plot needs to incorporate the

effect of Mc, that is L = L(Mc) which is to be obtained.
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From the LES computation, it is seen that L has the form

L = Ae−BMc (5.9)

Where A ≈ −0.014 and B ≈ 6.7. This relation is used as a initial guess for the

RANS computations which follow.

Relation to Prandtl’s Mixing length hypothesis

The results obtained in the previous section that

τxy
ρ̄(∆U)2

= L
Sxy

(∆U)/x
(5.10)

is not surprising. We can write this as

τxy = Lρ̄
∆U

δ
δ2x

δ
Sxy =

L

δ′
δ2ρ̄

∆U

δ
Sxy (5.11)

For a mixing layer, we have from the mixing length hypothesis, τxy ≈
ρ̄l2m |Sxy|Sxy. This mixing length (lm) is proportional to δ, say lm = cδ. Fur-

thermore, the |Sxy| is proportional to
∆U

δ
. Putting all this together, we obtain

c2 = L/δ′ (5.12)

Which means L = δ′c2. Where c is the ratio of the mixing length to the width

of the mixing layer.

5.4.2 Modelling of τyy

The expected choice of the mean flow parameter to be used for modelling

τyy is Fig 5.8. However this turns to be difficult, at least from the measure-

ments of RANS. It can be seen from Fig 5.11 that though the variation of τyy

is smooth, the variation of Syy is absolutely not so. Furthermore, it is not ap-

propriate to relate Syy to τyy because of a basic reason that τyy ≡ 〈ρv′′v′′〉 ≥ 0

whereas no such requirement is present from Sxy which can assume both pos-
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itive as well as negative values, and in fact it does attain negative values at

many locations.
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Figure 5.11: τyy and Syy at the same stream-wise location

It is hence sought to relate τyy back to Sxy, taking inspiration that shear

strain is the dominant strain in the mixing layer. Since the shear strain too

goes positive as well as negative, it is sought to relate the non-dimensionalized

τyy to non-dimensionalized Syy. The approximate equation so obtained is

τyy
ρ∆U2

= A+
B(

Mc + 0.01

0.25

)2

(
S2(S + 0.4)2

)0.125 ± 0.01
(
S2 − S4

)0.125

(5.13)

where S =
Sxy

30(∆U/x)
and A and B are constants evaluated to be nominally

0.02 and 0.03 respectively from the LES computations.

In the above equation, it must be noticed that S always appears with an

even power. This is because τyy is always positive while S can be both positive

and negative. The behavior of τyy with S is captured through expressing the

behavior in terms of an ellipse that has a bias. An examination of an ensemble

of the results shows that macro-behavior of the mixing layer is captured with

a relatively simple curve fit of the behavior as above.
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5.5 Reynold’s hypothesis and evolution of Prt and

Sct

Till this point we concentrated only the momentum equation, however

model is required RANS even in the energy and the species conservation equa-

tion.

Similar to the momentum equation, the energy equation yields the term

−〈ρui′′h′′〉

Noting that the effect of this term is similar to that of the heat diffusion term,

this term is usually written as

− 〈ρui′′h′′〉 = 〈ρ〉αt
∂ {h}
∂xi

(5.14)

Where αt is the analogous to the conductivity of the laminar flow, and

needs to be modelled.

Reynold’s Analogy Reynold’s analogy relates the turbulent momentum

transfer to the turbulent heat and mass transfer. The assumption that the

mechanism of turbulent transfer is the same for all the three (momentum,

heat and species) transfers, results in the conclusion that transport coefficient

must be similar.

Thus with the definition of turbulent Prandtl number Prt as the ratio of

turbulent heat transport to the turbulent momentum transport, we expect Prt

to be near unity.

Prt ≡
µt

〈ρ〉αt

=
〈ρu′′v′′〉
〈ρh′′v′′〉

∂ {h}
∂y(

∂ {u}
∂y

+
∂ {v}
∂x

) (5.15)

On similar lines, we have the diffusion equation, which presents the un-
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resolved term

−〈ρYj ′′ui′′〉

for the jth species. This is considered to be a form of diffusion caused due to

turbulence, hence can be written as

− 〈ρYj ′′ui′′〉 = 〈ρ〉Dj
∂Yj
∂xi

(5.16)

Like for the heat transfer, for species we define the turbulent Schmidt

number Sct as the ratio of turbulent transport of species to the turbulent

transport of momentum. Reynold’s analogy expects Sct to be near unity.

Sct ≡
µt

〈ρ〉Dt

=
〈ρu′′v′′〉
〈Yj ′′v′′〉

∂ {Yj}
∂y(

∂v

∂x
+
∂u

∂y

) (5.17)

Other than these we also have the ratio of the heat transport and the

species transport due to turbulence. This is the turbulent Lewis number Let.

Thus

Let ≡
αt

Dt

=
〈ρh′′v′′〉
〈ρYj ′′v′′〉

∂ {Yj}
∂y
∂ {h}
∂y

(5.18)

5.5.1 Extraction of Turbulent Prandtl Number and Schimdt

Number

Extraction of Turbulent Prandtl Number (Prt)

From the simulation, the Favre averaged enthalpy, and the Favre averaged

velocity field is obtained, whose gradient is computed, from which the gradient

of these are computed to obtain

∂ {h}
∂y

and
∂ {u}
∂y

+
∂ {v}
∂x
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The simulation also computes {hU} from which we an obtain

{h′′v′′} = {hU} − {h} {v} (5.19)

One of the problems in evaluating Prt is that the definition is ill posed

near the edges of the mixing layer, and at any location where the velocity

gradients are small. To be able to clearly see the distribution of Prt, hence it

was sought to plot τ
∂ {h}
∂y

versus 〈ρh′′v′′〉
(
∂ {u}
∂y

+
∂ {v}
∂x

)
. This is plotted

in Fig 5.12.
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Figure 5.12: Prandtl Number computation

[Left has a lower Mc as compared to right side figure. The Prandtl number is much

smaller than unity, and increases downstream.]

It can be noted from Fig 5.12 that the value of Prt is significantly lower

than unity. Wilcox [1998] suggested a value of Prt = 0.5 for a mixing layer.

The present simulation shows a value of around 0.2 to 0.5 in most part of

the domain, but varies throughout the length. The reason for this behaviour

is investigated in Sect 5.5.2. From this we can infer that the heat diffusion

to heat velocity fluctuation ratio is significantly more than the momentum

diffusion to momentum fluctuation ratio. The local ratio of the Prt varies

substantially. The value of this seems to be influenced by the flow parameter
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too. Furthermore it is also seen that the secondary side has a consistently lower

Prt as compared to the primary side.

Extraction of Turbulent Schmidt Number (Sct)

Sct was calculated in a way similar to Prt by using

{Yj ′′v′′} = {Yjv} − {Yj} {v} (5.20)

Figure 5.13 shows τxy
∂YAr
∂y

plotted against 〈ρ〉 {YAr}
(
∂ {u}
∂y

+
∂ {v}
∂x

)
.

Hence the slope of any line passing through a point and the origin is the Sct

at that location.
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Figure 5.13: Schmidt Number computation

[Left has a lower Mc as compared to right side figure. The value of Sct is lower on the

primary side and higher on the secondary side. Near splitter plate has a greater spread

than further downstream]

As in the case of Prt, Fig 5.13 shows that the value of Sct is lower than

unity, and for most of the domain has a value from 0.2 to 0.8. It can also be

noted that this value is slightly lower on the primary side than on the secondary

side. Likewise again, like Prt, it unlikely to be able to get accurate results by
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using a constant value for the values of Sct, because of its large variation in

both the stream wise location as well as the cross wise location.

5.5.2 Reasons for the observed behaviour of Prt, Sct and

Let

The reasoning of the behaviour of the Prt, Sct and Let can be inferred from

a typical diffusion pattern of the same. To understand this the average profiles

of {h}, {T} and {U} is plotted in Fig 5.14, where the respective quantities

are scaled to make them vary from 0 towards y = −∞ and 1 towards y =∞.
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Figure 5.14: Comparing the diffusion of heat, species and momentum

[The diffusion of heat and species is more than the diffusion of momentum]

It is quite apparent from Fig 5.14 that the diffusion of heat and species

happens more than the diffusion of momentum. It is also apparent that the

diffusion of the species and heat happens in a similar way, albeit there is a clear

asymmetry in the patten in the diffusion on the primary side as compared to

the secondary side. This difference appears as the difference small deviation in

the Let observed.

It is also apparent that the enthalpy and the species profiles become self
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similar faster than the mean velocity profiles.

5.6 Unsteady RANS computations

Unsteady RANS was used for the computations for the compressible mix-

ing layers, with the turbulence model for τxy as mentioned in the previous

section. These simulations were carried out with the same fluid, Air, in both

the streams, and a constant Prt of 0.3 was used. These cases are defined in

Table 5.1.

With each of these test cases, an unsteady RANS simulation was per-

formed, and averaging was performed over 10 sweeps, and the growth rate was

measured. The growth rate showed an almost linear variation with the L. This

was used to estimate the value of L which would give the expected growth

rate.

5.6.1 RANS Simulation Results

The value of L which provides the expected growth rate is shown in

Fig 5.15. We proposed earlier an ansatz that the value of L is of the form

L ≈ Ae−BMc (5.21)

Case Uavg[m/s] Mc r s
U [m/s] T [K] M

p[Pa]
Prm Sec Prm Sec Prm Sec

1 - 7 500 0.27 0.68 1.25 597 402 358.1 286.49 1.58 1.19 7000
8 - 14 500 0.35 0.68 1.25 597 402 213.1 170.49 2.04 1.54 7000
15 - 21 500 0.45 0.68 1.25 597 402 128.9 103.14 2.62 1.98 7000
22 - 28 500 0.55 0.68 1.25 597 402 86.3 69.04 3.20 2.42 7000
29 - 35 500 0.65 0.68 1.25 597 402 61.7 49.43 3.79 2.86 7000
36 - 43 400 0.70 0.60 1.25 500 300 56.6 45.29 3.31 2.22 7000
44 - 49 400 0.75 0.55 1.25 516 283 66.5 53.20 3.16 1.94 7000
50 - 56 400 0.05 0.95 1.25 410 389 116.7 93.37 1.89 2.01 7000
57 - 63 400 0.10 0.90 1.25 421 378 122.9 98.35 1.89 1.91 7000

Note: The seven cases in each row correspond to cases with Mc <= 0.6, L
was tried with values [0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1.]× 10−3, and for others

[0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1.]× 2× 10−5

Table 5.1: Specifications of RANS Simulations
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Mc L× 104

0.05 17.7
0.1 11.4

0.27 5.31
0.35 2.89
0.45 2.50
0.55 1.01
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L ≈ 0.00294× e(−6.756Mc)

Figure 5.15: Measured and interpolated variation of L with Mc

Which is valid for low Mc to moderately large Mc. With this the best fit for

the observed values of L is

L ≈ 0.00294e(−6.756Mc) (5.22)

Thus substituting in Eqn 5.8 we get the model for τxy as

τxy
ρ̄(∆U)2

=
Sxy

(∆U)/x

(
0.003e(−6.76Mc)

)
(5.23)

It must be noted that from the experiments of Goebel and Dutton [1990a]

the velocity profile and the shear stress can be calculated. Assuming δ/x is the

same as dδ/dx from Fig 5.16 where we can see that it is about 0.000776 .

From the expression we obtain a value of L as 0.00076, which is indeed very

close to the experimental value.
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Figure 5.16: Value of µt as can be obtained form Goebel and Dutton [1990a]

5.6.2 Simulations with the model values

The simulations were performed with the values predicted from Eqn 5.23.

The results of these are presented in the following sections.

Growth Rate

The growth rate of the different cases were measured, and were compared with

the experimental results. The plot of the growth is shown in Fig 5.17. It can

be seen that the growth rate of the mixing layer shows a clear decrease with

increase in the Mc. Also it is seen that the

Along with the model, it is also necessary to note the sensitivity of the

growth rate to the coefficient in the model. This is necessary to know the

influence the model has on the mixing mechanism. This is plotted along with

other data in Fig 5.17

If the sensitivity of the model, defined as the ratio of change of the nor-

malized growth rate to the value of L

∆(δ′/δ′0)

∆L/L
≈ 1.5 (5.24)

Furthermore, for the same L the effect of variation of A and B from Eqn
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Figure 5.17: Growth of the mixing layer with RANS at different Mcs

[The clear reduction of the growth and the growth rate with increasing Mc. The

numbers indicate the Mc,L× 1e5,A and B]
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Figure 5.18: Sensitivity of Growth rate with L

[The error bars show the difference expected in the growth rate for a variation of ±5%

in the value of L]

5.13 was studied. This is shown in Fig 5.19

It is seen clearly that where as the growth rate is quite sensitive to the
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selection of the constants for τxy, it is hardly so in case of the coefficients related

to τyy, unless for the case where the model for τyy is not made zero. This goes to

so that it is not very important to have the model for τyy extremely accurate,

and neither for τxx needs to be modelled quite accurately, because the growth

rate is not very sensitive to the model of shear stress and not to the normal

stress.
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Figure 5.19: Variation of Growth pattern with A and B

[The value of A and B have little effect when they are non-zero.]

5.7 Conclusions

It has been known that the k based turbulence models are not suited

for good prediction of the mixing layer growth rate. The reason for this was

identified from the LES simulations. τxy was determined to be the most im-

portant factor which contributes to the growth of the mixing layer. This was

done using integral analysis to come to a rough conclusion, and then through

analysis of the data obtained from LES.

It was seen from the analyses that the shear stress scales quite reasonably

with the shear strain for most of the mixing layer, and that a simple mixing

length approach is expected to yield the mixing layer reduction, albeit the

length itself would be a function of Mc. This was estimated from the LES to

be roughly an exponential function, and a series of experiments with RANS
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were tried and the functional form of the mixing length was established and

coefficients determined. τyy at the same time was also related using a suitable

algebraic relation to Sxy. Furthermore, the LES simulations were analysed to

calculate and compare the non-dimensional numbers characterizing the diffu-

sion of momentum, enthalpy and species. It was determined that the values of

Prt and Sct are in the range 0.3–0.5. The relation obtained after tuning was

seen to predict the growth rates well within the band of experimental results.

Further, it was shown that the growth rate was not sensitive to the modelling

of τyy, indicating that a simpler model could have been used.

It must be emphasized no less that the current work does not attempt to

model k. If k is to be estimated, it must be solved for independently, perhaps

with a classical turbulence model for k. In fact Launder et al. [1972] claimed

that the kinetic energy from mixing length models are not very good. The

claim made, is that it is sufficient to model the τxy accurately to obtain the

reduction in the growth rate, and this can be adequately be done by a simple

zero equation model. This approach is sufficient to give the correct mean flow

features. Furthermore, since the measured τxy from LES was composite effect

of the pressure strain term as well as the production term, the behaviour of

τxy with reduction in the value of L with Mc taken into account, would have

captured the cumulative effect of decrease of production and pressure strain

term.

The fact that the growth rate is not very sensitive to τyy (and of course

τxx) also opens up the possibility of merging this with k − ε or kω model,

where in the region of the mixing layer, the shear stress is predicted using

the present zero equation model, and the normal stresses predicted by an

eddy viscosity model. This will of course still be flawed in that the anisotropy

would not be accounted for, even if the measure of the turbulent kinetic energy

would roughly be correct. This particular aspect has not been dealt with in

the present work.
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Chapter 6

Entropy Generation and Trends

6.1 Introduction

When the issues related to mixing layer thickness reduction due to com-

pressibility effects were being internally debated, it was thought if it was useful

to explore of ideas of entropy change since mixing implied inherently entropy

increase and increased convective Mach number led to reduced mixing. It was

clear that this approach could enhance understanding but not add to prac-

tice (calculation procedure or predictive schemes) in any sense. It was thought

appropriate to use the conservation equations that involve the mixing of two

high speed streams with different gases (Set3 involving argon and nitrogen -

see section) by casting them in the entropy format.

The different terms that enter into the picture are: reversible heat trans-

fer, irreversible heat transfer, reversible diffusion, irreversible diffusion, and

shear. A different approach to viewing the production of turbulence and the

dissipation is considering turbulence as source of entropy production. Fluid

flow causes irreversible entropy generation through mixing of different species

and through dissipation. In addition, there is also an isentropic or reversible

generation or removal of entropy. We shall first write the entropy equation as

a convective equation with source terms representing the reversible and the

irreversible entropy generation. This will be followed by studying the variation

of the same with the flow parameters.
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6.2 Governing Equation

To inspect the entropy generation and its convection, we need to develop

the equation of entropy in conservation form. It must be appreciated that

the entropy is a property of the fluid and this can be calculated knowing the

pressure, temperature and species at any given point in the field. However,

this method of calculating the entropy, can at best give the difference in the

total sum of the generation when contrasted with the free stream values. To

be able to decipher this total entropy generation and break it down into it

constituent sources, it is necessary to have an evolution equation 1 for entropy.

Besides a rough comparison between the value of entropy calculated from the

latter approach i.e. the evolution equation and the one obtained from the fluid

properties serves as a quick check of the evolution equation.

We start with the energy equation Eqn(2.9) on Page(48)

ρ
De

Dt
= −p∇ · u+ σ : ∇u−∇ · q (6.1)

where q represents the heat flux due to molecular diffusion (conduction).

Considering energy to be a function of entropy, density and species mole

fraction,

de = Tds+
p

ρ2
dρ+

∑
j

(
∂e

∂nj

)
ρ,s,ni 6=j

dnj (6.2)

And simplifying the terms we finally arrive at the equation (see Appendix

A.5 on Page203 for the derivation)

ρ
Ds

Dt
= −∇ ·

( q
T

)
+

λ

T 2
(∇ · T ) (∇ · T )

+
∑
j

∇ ·
(

µj
WjT

)
jj −

∑
j

R

WjYj
∇Yj · jj +RW

∑
i

∇Yi
Wi

·
∑
j

jj
Wj

+
1

T
σ : ∇u

(6.3)

1It is well appreciated that there is not law of conservation of entropy and hence the term
conservative form for entropy is misleading and rather meaningless. However here we mean
the evolution equation written in a form with a part which is conserved as a passive scalar
and source terms for all of the part which change entropy.
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Terms in Eqn 6.3 are explained in Table 6.1

Term Name Significance

ρ
Ds

Dt
Substantial derivative of entropy

−∇ ·
( q
T

)
src Reversible entropy change due to heat transfer

λ

T 2
(∇ · T ) (∇ · T ) sic Irreversible entropy change due to heat transfer∑

j

∇ ·
(

µj
WjT

)
jj srm Reversible entropy change due to mixing

−
∑
j

R

WjYj
∇Yj · jj sim1 Irreversible entropy change due to mixing

RW
∑
i

∇Yi
Wi

·
∑
j

jj
Wj

sim2 Irreversible entropy change due to mixing

1

T
σ : ∇u sτ Irreversible entropy generation through dissipation

Table 6.1: Terms in Eqn 6.3

Each of these terms were implemented in the code, and analysed. These

terms match the ones mentioned in Okong’o and Bellan [2000]

6.3 Consistency

As mentioned earlier, entropy is calculated by two techniques. First is

to solve the evolution equation and actually convect entropy with the fluid

along with the source terms. The second technique is to calculate the entropy

directly from the fluid properties.

The stream properties are calculated using the coefficients from McBride

et al. [1993] as in Eqn(2.19) on Page(49)

s0

R
= a1 ln(T ) + a2T + a3

T 2

2
+ a4

T 3

3
+ a5

T 4

4
+ a7 (6.4)

Figure 6.1 shows the average entropy measured from direct calculation
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Figure 6.1: The entropy calculated by evolution and by direct calculation almost
match each other

[Consistency of Entropy Calculations]

and from the evolution equation for two cases at some arbitrary stream-wise

location. It can be clearly seen that the entropies measured by either techniques

are matching almost perfectly. This confirms the implementation of the entropy

code, as well as the derivation of the entropy evolution equation.

6.4 Description of the sources

In this part we shall qualitatively study the various contribution to the

entropy due to the different sources, as described in Table 6.1. We shall also

study the influence Mc has on each of these sources.

6.4.1 Reversible Heat Transfer

General Features

This corresponds to the term

src ≡ −∇ ·
( q
T

)
The src term arises from the conduction equation. Conduction, the diffusion

of thermal energy from a high temperature side to the low temperature side,

involves a decrease in the entropy on the high temperature side, and an increase
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in the entropy on the low temperature side. The decrease in the entropy is

smaller than the increase in the entropy on the low energy side, when there

is a finite temperature difference between the source and the sink. Any heat

transfer with infinitesimal temperature difference is reversible. It can be seen

that this term involves both positive as well as negative values, of similar

magnitude, though not exactly same.

Variation with Mc

The comparison for src for the cases differing only in Mc is shown in Fig 6.2.
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Figure 6.2: Time averaged and cross-wise integrated value of 〈src〉
[Left: The time averaged source of src across the stream at a particular stream-wise

location, and Right: integrated quantity in the cross wise direction.]

From the time average plot, tt can be seen that the sources have quite

similar values. It is also seen that the values mostly appear as pairs of positive

and negative values of almost the same value, negative on the side of higher

temperature and positive on the side of lower temperature. Further the inte-

grated values do not show any clear trend with respect to Mc. Hence it can be

concluded that an increase in the Mc does not influence src significantly.
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6.4.2 Irreversible Heat transfer

General Features

This corresponds to the term

sic ≡
λ

T 2
(∇ · T ) (∇ · T )

As can be seen from the definition of sic as well as from the plots, this term

is always positive and it only increases the entropy. Also as can be seen from the

equation, the contribution is proportional to the gradient of the temperature

as well as inversely proportional to the temperature. Hence as can be seen in

the source peaks on the primary side.

Variation with Mc
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Figure 6.3: 〈sic〉, time averaged plotted at a cross-wise location and cross-wise aver-
aged values in the stream-wise direction

[The plot shows a distinct increase in the source of entropy with increasing Mc]

It can be seen that clearly, that greater Mc is resulting in higher values

of 〈sic〉. To reason out this, we observe that roughly speaking

sic ∝
(

1

T1

− 1

T2

)2(
T1 − T2

δ

)2

=
1

δ2

(T1 − T2)4

(T1T2)2 (6.5)
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We note that for the same fluids at different Mc and same velocity ratio

s, we have

s =
ρ2

ρ1

=
T1R1

T2R2

(6.6)

Thus for the same combination of fluids, and at the same density ratio, the

ratio of the temperatures is the same. Hence(
(T1 − T2)2

T1T2

)∣∣∣∣∣
Case 3

≈

(
(T1 − T2)2

T1T2

)∣∣∣∣∣
Case 5

(6.7)

Hence the greater source term is indicative of the smaller growth rate.

6.4.3 Reversible Diffusion

General Features

This corresponds to the term

srm ≡
∑
j

∇ ·
(

µj
WjT

)
jj

Reversible entropy change has both positive as well as negative values at dif-

ferent regions of the flow. At the zones of mixing, due to diffusion, there are

negative sources adjacent to positive sources. In these it is seen that the usual

locations of the negative and the positive sources are separated in the cross

wise direction, and hence due to time averaging, they do not cancel out each

other. Hence averaging over time shows distinct regions of negative source and

positive source.

Variation with Mc

Upon cross-wise integrating, this term more or less cancels out completely.

Further, in the stream-wise direction, the integrated source is definitely not

single signed. Hence it would be a fair conclusion that this term has an in-

significant contribution to the total entropy change, and that this term is not

affected by Mc.
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Figure 6.4: 〈srm〉, time averaged plotted at a cross-wise location and cross-wise aver-
aged values in the stream-wise direction

[Note the large negative and positive values]

6.4.4 Irreversible Diffusion (A)

General Features

This corresponds to the term

sim1 ≡ −
∑
j

R

WjYj
∇Yj · jj

. It can be seen from equation since ∇Yn and jj have opposite directions, sim1

will always be positive. Also as in the case of the other diffusion terms, this

term has a larger magnitude near the contact regions between the two fluids.

It is important to note that this term is independent of the direct influence of

temperature, and is hence present on both the edges of the mixing layer.

Variation with Mc

sim1 is a term which is independent of the temperature, and this term is seen

in Fig 6.5 to increase with decrease in the Mc. Also this term can be seen

as the most dominant of the irreversible entropy source terms. The decrease

in the mixing process with increase in Mc causes this term to decrease with
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increase in Mc.
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Figure 6.5: 〈sim1〉, time averaged plotted at a cross-wise location and cross-wise av-
eraged values in the stream-wise direction

[Note the decrease in the peak value with increase in Mc]

6.4.5 Irreversible Diffusion (B)

General Features

This corresponds to the term

sim2 ≡ RW
∑
i

∇Yi
Wi

·
∑
j

jj
Wj

It must first be mentioned that his term arises due to difference in the molecular

weights. This is observed from the definition of sim2 that for streams with the

same molecular weight, this term will become 0 because
∑
j

jj
Wj

= 0.

Variation with Mc

Variation of sim2 with Mc is shown in Fig 6.6

It can be observed at once that though this term is always negative, its

magnitude is rather small. It shows a greater negative value for greater Mcs,
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Figure 6.6: 〈sim2〉, time averaged plotted at a cross-wise location and cross-wise av-
eraged values in the stream-wise direction

[Note the always negative and the small magnitude of the values]

but since the magnitude of this term is small, this influence is insignificant

over the effect of sim1

6.4.6 Shear

General Features

This corresponds to the term

sτ ≡
1

T
σ : ∇u

This term corresponds to the increase in the entropy due to conversion of

kinetic energy to heat (dissipation). The magnitude of this term is large where

there is a large shear and is higher with lower temperatures. This term is seen

to be always positive, which is expected.

Variation with Mc

The variation of sτ with Mc is shown in Fig 6.7. It can be seen from Fig 6.7

that the value of the entropy source due to shear actually increases with in-
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Figure 6.7: 〈sτ〉, time averaged plotted at a cross-wise location and cross-wise aver-
aged values in the stream-wise direction

[Note that this terms is always positive.]

crease in the Mc. The basic reason for this being the large gradient of the

velocity, the growth rate being small.

6.5 Total Contributions

A histogram of the (rms) contribution of entropy generation is presented

in Fig 6.8. This shows the total contributions, and in this it is seen that

there is no particular trend in the total contribution. This is primarily because

if reverse trends in shear an in mixing. The opposite trends cancel out each

other and on the whole no specific trend is found with increase in Mc, though

individual trends are seen.
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Figure 6.8: Histogram of contribution

[The specific components show trends, however the overall contribution does not show

any clear trend ]

6.6 Conclusions

The detailed study of entropy evolution is studied in this chapter. The

evolution equation for entropy is developed, and following this, it was verified

that the entropy obtained from the convective solution compares well with the

entropy calculated from the fluid properties.

The sources of entropy generation are identified, and analysed for their

relative contribution and the variation with Mc. It is seen that sim1 is the

greatest source of entropy generation in the current set of calculations. It is

also seen that the value of this term decreases with increasing Mc. The effect

of shear is exactly opposite and that with increasing Mc is accompanied with

an increasing entropy source. Even though the two terms cancel out nearly

leaving the net effect unaltered with changes in Mc, it is perhaps one of these

terms that has greater effect on the mixing layer and hence the observed effect.

Quite clearly, the entropy approach in resolving the issue of convective Mach

number influence on growth rate is not adequately insightful.
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Chapter 7

Overview and future work

This work has been concerned with the behavior of high speed mixing layer

as a function of various flow parameters. Placed between ineffective RANS

strategy and a vastly time-consuming DNS, the present work has chosen to

elucidate the details using LES that has reached maturity in its ability to

capture the important scales of the flow. The aim has been to concentrate

of the crucial initial development of the flow that emanates from the splitter

plate. The boundary layers on the top and the bottom surfaces of the splitter

with a wake controlled by the thickness of the splitter plate merge and the

minimum velocity in the field keeps increasing as mixing proceeds. This profile

with two inflection points controls the instability in the flow. Computational

analysis has shown that the distances it takes for the wake region to disappear

and self-similarity to appear both increase with convective Mach number. This

is consistent with the view point that arises out of theoretical analysis – even of

hyperbolic tangent profiles showing that the central issues lie with convective

Mach number . While many details of the role of various parameters like stream

speed ratio and density ratio are elucidated, what has been found important

is to examine the evolution of stresses in the flow field with flow development

and convective Mach number. This examination made evident the possibility

of simple relationships between the stresses and strain rates, a feature that has

been exploited in the development of an unsteady Reynolds averaged Navier-

stokes calculation approach. Before embarking on this approach, it was thought

prudent to examine why the classical RANS approaches have failed to bring out

the effect of convective Mach number. It is found that the field of eddy viscosity

in the momentum equation is obtained as a relation between the turbulent

kinetic energy and the eddy dissipation and the equation for the kinetic energy
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has a property that the crucial effect of convective Mach number that occurs as

a sum of two stress source terms cancel out. This is the reason why an alternate

approach, albeit simpler one is what is adopted here. The eddy viscosity is

known to be a simple constant through the mixing layer in incompressible

mixing layer and is now modified as a function of convective Mach number,

and was used only for the prediction of shear stress. It is important to point

out that this is done on the basis of the results of LES simulations. This

approach helped by the deduction of a relationship of eddy viscosity for shear

stress with convective Mach number leads to expected results. A question that

arises now will be: How will the more successful k − ε or k − ω approaches be

integrated into a complex flow field with boundary layers and mixing layers in

a high speed flow setting? This needs an approach to identify mixing layer zone

and a strategy for switching from the classical methods of estimation of the

turbulent shear stress to the present model in the region of mixing layer. This

will preserve the dependence of mixing with the convective Mach number, as

well as provide the correct k distribution. Perhaps there are other alternatives

that need exploration. These constitute the future work of significance.
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Part III

Appendices
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Appendix A

Details of Derivations and

Implementations

A.1 Implementation of the Turbulent Inlet velocity

Field

The aim is to implement the generation of a simple (pseudo) random field

which imitates turbulence to some extent at least. Turbulence is made of large

as well as small eddies, which cause spatio-temporal correlations to be present.

Also the specification is for the generation of a field with a prescribed mean

(〈U〉) and a prescribed standard deviation (σU).

The formulation of such a field was

U = (1− α)U + α 〈U〉
(
1 + σℵR1

−1

)
(A.1)

Where

U is the current velocity

α is the autocorrelation factor which controls the temporal correlation

R1
0 is a random number generator from 0 to 1

ℵ is a factor to be multiplied to correct σU due to autocorrelation

The following figures indicate the obtained velocity distributions and en-

ergy content for various values of α
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Figure A.1: Inlet for small α
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Figure A.2: Inlet for large α

We can see that the energy spectrum is reasonable, with some energy in

the larger eddies and successively decreasing energy in smaller structures. It

must also be noted that no spatial correlation was implemented. The turbu-

lence in the inlet stream is small, and is only to trip and start off the instability

mechanism if the mixing layer, hence not much attention is required to be given

to the details of inlet turbulence structure. Referred from Section 2.4.1 on Page 60
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A.2 Flow parameters to primitive parameters

We have the definitions

Mc ≡
U1 − U2

a1 + a2

(A.2)

Uavg ≡
U1 + U2

2
(A.3)

r ≡ U2

U1

(A.4)

s ≡ ρ2

ρ1

(A.5)

Using Eqn A.4 and Eqn A.3 we get

Uavg = U1
(1 + r)

2
(A.6)

hence

U1 = 2
Uavg

1 + r
(A.7)

And from Eqn A.4

U2 = 2
Uavgr

1 + r
(A.8)

Substituting the values of U1 and U2 into Eqn A.2 and using a =
√
γRT

we get

Mc =
Uavg

1− r
1 + r√

γRT1 +
√
γRT2

(A.9)

Noting that both streams are at the same pressure and for the same gas the

ideal gas equation yields

s =
ρ2

ρ1

=
T1

T2

(A.10)

the denominator of Eqn A.9 becomes√
γRT1 +

√
γRT2 =

√
γRT2

(
s1/2 + 1

)
(A.11)

185



Thus √
T2 =

Uavg

Mc

√
γR (s1/2 + 1)

(
1− r
1 + r

)
(A.12)

Squaring both sides we get the relation for T2 as

T2 =
1

γR

(
Uavg

Mc (s1/2 + 1)

(
1− r
1 + r

))2

(A.13)

And finally using Eqn A.10

T1 =
s

γR

(
Uavg

Mc (s1/2 + 1)

(
1− r
1 + r

))2

(A.14)

Referred from Section 2.9 on Page 78
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A.3 Turbulent Kinetic Energy Balance

This section follows Canuto [1997] initially, but deviates from it as men-

tioned later. To get the turbulent kinetic energy we shall track the mean flow

energy defined as

E ≡ 〈ρ〉
2
{Ui} {Ui} (A.15)

And the turbulent kinetic energy defined as

k ≡ 〈ρ〉
2
{ui′′ui′′} (A.16)

A.3.1 Mean Flow Kinetic Energy

To arrive at the mean flow kinetic energy evolution equation we average

Eqn 2.3 to get
∂ 〈ρUi〉
∂t

+
∂ 〈ρUiUl〉
∂xl

= −∂ 〈p〉
∂xi

+
∂σil
∂xl

(A.17)

Expanding the convective term and using the definition of Favre averaging

(Eqn 2.32) we get

∂ 〈ρ〉 {Ui}
∂t

+
∂ 〈ρ〉 {Ui} {Ul}

∂xl
+
∂ 〈ρ〉 {Ui′′Ul′′}

∂xl
= −∂ 〈p〉

∂xi
+
∂ 〈σil〉
∂xl

(A.18)

We use the following notation

τij = 〈ρ〉 {Ui′′Uj ′′} (A.19)

With this the averaged momentum equation becomes

∂ 〈ρ〉 {Ui}
∂t

+
∂ 〈ρ〉 {Ui} {Ul}

∂xl
= −∂ 〈p〉

∂xi
+

∂

∂xl
(〈σil〉 − τil) (A.20)

To arrive at the mean flow energy equation we multiply Eqn A.20 with {Uj}
and add it with {Ui}× (Eqn A.20) with index i swapped with j) Thus we
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have

{Uj}
∂ 〈ρ〉 {Ui}

∂t
+ {Uj}

∂ 〈ρ〉 {Ui} {Ul}
∂xl

= −{Uj}
∂ 〈p〉
∂xi

+ {Uj}
∂

∂xl
(〈σil〉 − τil)

+ (A.21)

{Ui}
∂ 〈ρ〉 {Uj}

∂t
+ {Ui}

∂ 〈ρ〉 {Uj} {Ul}
∂xl

= −{Ui}
∂ 〈p〉
∂xj

+ {Ui}
∂

∂xl
(〈σjl〉 − τjl)

Expanding the terms we get

��
���

���
�:a

{Uj} {Ui}
∂ 〈ρ〉
∂t

+ {Uj} 〈ρ〉
∂ {Ui}
∂t

+
���

���
���

��:a

{Uj} {Ui}
∂ 〈ρ〉 {Ul}

∂xl
+ {Uj} {Ul} 〈ρ〉

∂ {Ui}
∂xl

(A.22)

= −{Uj}
∂ 〈p〉
∂xi

+ {Uj}
∂

∂xl
(〈σil〉 − τil)

+ (A.23)

���
���

���:b
{Ui} {Uj}

∂ 〈ρ〉
∂t

+ {Ui} 〈ρ〉
∂ {Uj}
∂t

+
���

���
���

��:b

{Ui} {Uj}
∂ 〈ρ〉 {Ul}

∂xl
+ {Ui} {Ul} 〈ρ〉

∂ {Uj}
∂xl

(A.24)

= −{Ui}
∂ 〈p〉
∂xj

+ {Ui}
∂

∂xl
(〈σil〉 − τil)

Where (a) and (b) terms become zero on account of the averaged mass con-

servation equation.

Finally performing the addition we get

〈ρ〉 ∂ {Ui} {Uj}
∂t

+〈ρ〉 〈Ul〉
∂ {Ui} {Uj}

∂xl
= {Ui} (−〈p,j〉+ σjl,l − τjl,l)+{Uj} (−〈p,i〉+ σil,l − τil,l)

(A.25)

To seggregate the terms, and referring to the operator

∂

∂t
+ 〈Ul〉

∂

∂xl
≡ 〈D〉
〈D〉 t

(A.26)

we get

〈ρ〉 〈D〉
〈D〉 t

{Ui} {Uj} = −{Ui} τjl,l − {Uj} τil,l + 〈Fi〉 {Uj}+ 〈Fj〉 {Ui} (A.27)
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Where

Fi ≡ −
∂p

∂xi
+
∂σil
∂xl

(A.28)

A.3.2 Turbulent Kinetic Energy equation

For the turbulent Kinetic energy equation we multiply the compressible

momentum equation (Eqn 2.3) with uj, and addding with (Eqn 2.3 with

index i swapped with index j) multiplied with Ui

Uj
∂ρUi
∂t

+ Uj
∂ρUiUl
∂xl

= −Uj
∂p

∂xi
+ Uj

∂σil
∂xl

+ (A.29)

Ui
∂ρUj
∂t

+ Ui
∂ρUjUl
∂xl

= −Ui
∂p

∂xj
+ Ui

∂σjl
∂xl

Simplifying the terms, we get

Ujρ
∂Ui
∂t

+
�
�
�
��>

a

UjUi
∂ρ

∂t
+
�
��

�
��*

a

UjUi
∂ρUl
∂xl

+ ρUlUj
∂Ui
∂xl

+ Uiρ
∂Uj
∂t

+ UiUj
∂ρ

∂t
+ Ui

∂ρUjUl
∂xl

= Uj

(
− ∂p

∂xi
+
∂σil
∂xl

)
+ Ui

(
− ∂p

∂xj
+
∂σjl
∂xl

)
(A.30)

Where the terms indicated as (a) reduce to zero on account of the continuity

equation

Using the definition of F as in Eqn A.28, and by simplifying the terms

we get
∂ρUiUj
∂t

+
∂ρUiUjUl

∂xl
= UiFj + FiUj (A.31)

Before averaging this equation we enlist a few properties of averaging

〈ρUiUj〉 = 〈ρ〉 {Ui} {Uj}+ 〈ρ〉

Rij︷ ︸︸ ︷
{ui′′uj ′′}︸ ︷︷ ︸
τij

(A.32)

And we define the triple correlation term τijk as

τijk ≡ 〈ρ〉 {ui′′uj ′′uk ′′} (A.33)
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Using this definition we have the triple velocity correlation as

〈ρUiUjUk〉 = 〈ρ〉 {Ui} {Uj} {Uk}+ τij {Uk}+ τjk {Ui}+ τki {Ui}+ τijk (A.34)

With these definitions, we average the LHS of Eqn A.31 as

〈Eqn A.31〉 LHS =
∂ 〈ρUiUj〉

∂t
+
∂ 〈ρUiUjUl〉

∂Ul

=
∂ 〈ρ〉 {Ui} {Uj}

∂t
+
∂τij
∂t

+
∂

∂xl
(〈ρ〉 {Ui} {Uj} {Ul}+ τij {Ul}+ τjl {Ui}+ τli {Uj}+ τijl)

= 〈ρ〉 ∂ {Ui} {Uj}
∂t︸ ︷︷ ︸
b

+
��

���
���

�:a
{Ui} {Uj}

∂ 〈ρ〉
∂t

+
∂τij
∂t︸︷︷︸
c

+
���

���
���

��:a

{Ui} {Uj}
∂ 〈ρ〉 {Ul}

∂xl
+ 〈ρ〉 {Ul}

∂ {Ui} {Uj}
∂xl︸ ︷︷ ︸

b

+ {Ul}
∂τij
∂xl︸ ︷︷ ︸

c

+τij
∂ {Ul}
∂xl

+ {Ui}
∂τjl
∂xl

+ τjl
∂ {Ui}
∂xl

+ {Uj}
∂τil
∂xl

+ τil
∂ {Uj}
∂xl

+
∂τijl
∂xl

(A.35)

In the above equations (a) reduces to zero on account of the continuity equa-

tion. while (b) = 〈ρ〉 〈D〉
〈D〉 t

{Ui} {Uj} whose value is got from Eqn A.27, and

(c) is
〈D〉 τij
〈D〉 t

Thus substituting the above and using Eqn A.27 we get

〈Eqn A.31LHS〉 =
〈D〉 τij
〈D〉 t ��

���
�:a−{Ui} τjl,l����

��:b−{Uj} τil,l + 〈Fi〉 {Uj}+ Fj {Ui}+ τij {Ul,l}+���
��:a{Ui} τjl,l

+τjl {Ui,l}+���
��:b{Uj} τil,l + τil {Uj,l}+ τijl,l (A.36)

Thus the LHS of Eqn A.31, averaged,reduces to

〈D〉 τij
〈D〉 t

+ τij {Ul,l}+ τjl {Ui,l}+ τil {Uj,l}+ 〈Fi〉 {Uj}+ 〈Fj〉 {Ui}+ τijl,l (A.37)

Thus we have Eqn A.31, averaged

〈D〉 τij
〈D〉 t

+τij {Ul,l}+τjl {Ui,l}+τil {Uj,l}+〈Fi〉 {Uj}+〈Fj〉 {Ui}+τijl,l = 〈FiUj〉+〈FjUi〉

(A.38)
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The similar terms are seggregated as

〈D〉 τij
〈D〉 t

+ τijl,l = Pij + 〈FiUj〉 − 〈Fi〉 {Uj}+ 〈FjUi〉 − 〈Fj〉 {Ui} (A.39)

Where

− Pij ≡ τij {Ul,l}+ τjl {Ui,l}+ τil {Uj,l} (A.40)

We can further simplify the RHS of the above equation by noting that

〈FiUj〉 = 〈Fi ({Uj}+ uj
′′)〉 = 〈Fi〉 {Uj}+ 〈Fiuj ′′〉 (A.41)

Thus we have

〈FiUj〉−〈Fi〉 {Uj} = 〈Fiuj ′′〉 = 〈(−p,i + σil,l) uj
′′〉 = −〈p,i〉 〈uj ′′〉−〈p,i′uj ′′〉+〈σil,luj ′′〉

(A.42)

Substituting back we get

〈D〉 τij
〈D〉 t

+ τijl,l =


Pij − (〈p,j〉 〈ui′′〉+ 〈p,i〉 〈uj ′′〉)︸ ︷︷ ︸

Bij

− (〈p,j ′ui′′〉+ 〈p,i′uj ′′〉)︸ ︷︷ ︸
Πij

+ (〈σjl,lui′′〉+ 〈σil,luj ′′〉)︸ ︷︷ ︸
Xij


(A.43)

We can note that we can also write Πij as

〈p,j ′ui′′〉+ 〈p,i′uj ′′〉 = 〈p,j ′ui′〉+ 〈p,i′uj ′〉 (A.44)

We further need to separate the diffusive and the dissipative terms in Xij as

σjl,lui
′′ = ui

′′∂σjl
∂xl

=
∂ui

′′σjl
∂xl

− σjl
∂ui

′′

∂xl
= (ui

′′σjl),l︸ ︷︷ ︸
Diffusive

−σjlui,l′′︸ ︷︷ ︸
Dissipative

(A.45)

And similarly

σil,luj
′′ = (uj

′′σil),l︸ ︷︷ ︸
Diffusive

−σiluj,l′′︸ ︷︷ ︸
Dissipative

(A.46)
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Thus X splits as

Xij = (〈ui′′σjl〉+ 〈uj ′′σil〉),l︸ ︷︷ ︸
XDiff
ij

− (〈ui,l′′σjl〉+ 〈uj,l′′σil〉)︸ ︷︷ ︸
XDiss
ij

(A.47)

Thus the energy budget can be written as

〈D〉 τij
〈D〉 t

+ τijl,l −XDiff

ij = Pij +Bij − Πij +XDiss

ij (A.48)

We now decompose τ as τij = 〈ρ〉 {ui′′uj ′′} to get

〈D〉 τij
〈D〉 t

=
∂τij
∂t

+ {Ul}
∂τij
∂xl

=
∂ 〈ρ〉Rij

∂t
+ {Ul}

∂ 〈ρ〉Rij

∂xl
(A.49)

This can be expanded as

〈ρ〉 ∂Rij

∂t
+Rij

∂ 〈ρ〉
∂t

+ {Ul} 〈ρ〉
∂Rij

∂xl
+ {Ul}Rij

∂ 〈ρ〉
∂xl

(A.50)

The last term of which can be expanded as

〈ρ〉 ∂Rij

∂t︸ ︷︷ ︸
b

+
��

�
��*

0

Rij
∂ 〈ρ〉
∂t︸ ︷︷ ︸
a

+ {Ul} 〈ρ〉
∂Rij

∂xl︸ ︷︷ ︸
b

+
���

���
��:0

Rij
∂ {Ul} 〈ρ〉

∂xl︸ ︷︷ ︸
a

−Rij 〈ρ〉
∂ {Ul}
∂xl︸ ︷︷ ︸

c

(A.51)

In the above expression (a) reduces to zero on account of mass conservation,

(b) is 〈ρ〉 〈D〉Rij

〈D〉 t
and (c = τij {Ul,l}) is taken on the RHS and added to Pij

where

Σij ≡ Pij+τij {Ul,l} =���
���−τij {Ul,l}−τjl {Ui,l}−τil {Uj,l}+����

�τij {Ul,l} = −τjl {Ui,l}−τil {Uj,l}
(A.52)

Thus

〈ρ〉
{
〈D〉Rij

〈D〉 t
+Dij

}
= Σij +Bij − Πij +XDiss

ij (A.53)
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Finally decomposing Πij as

Πij = Πij −
1

3
δijΠkk︸ ︷︷ ︸

πij

+
1

3
δijΠkk (A.54)

The last term can be written as

1

3
δijΠkk =

1

3
δij (〈uk ′′p,k ′〉+ 〈p,k ′uk ′′〉) =

2

3
δij 〈p,k ′uk ′′〉 =

2

3
δij 〈p′uk ′′〉 ,k−

2

3
δij 〈p′uk,k ′′〉

(A.55)

Substituting these, and absorbing the first term on the RHS into Dij the energy

budget can be written as

〈ρ〉
{
〈D〉Rij

〈D〉 t
+Dij

}
= Σij +Bij − πij +XDiss

ij +
2

3
δij 〈p′uk,k ′′〉 (A.56)

where we have, to summarize

〈D〉
〈D〉 t

≡ ∂

∂t
+ {Ul}

∂

∂xl
(A.57)

Rij = {ui′′uj ′′} (A.58)

Dij =
1

〈ρ〉
∂

∂xl

(
τijk +

2

3
δij 〈p′ul′′〉 −XDiff

ij

)
(A.59)

τijk = 〈ρ〉 {ui′′uj ′′uk ′′} (A.60)

XDiff

ij = (〈ui′′σjl〉+ 〈uj ′′σil〉) (A.61)

Σij = −τjl {Ui,l} − τil {Uj,l} (A.62)

Bij = − (〈p,j〉 〈ui′′〉+ 〈p,i〉 〈uj ′′〉) (A.63)

πij = Πij −
1

3
δijΠll (A.64)

Πij = 〈p,j ′ui′′〉+ 〈p,i′uj ′′〉 (A.65)

XDiss

ij = − (〈ui,l′′σjl〉+ 〈uj,l′′σil〉) (A.66)

(A.67)

Referred from Section 4.2 on Page 127
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A.4 Integral Analysis

The growth rate at any given stream-wise direction is directly related to

the profiles of the velocity and the density at that location and the mean shear

stress. This derivation is similar to that of the Karman Integral equation for a

boundary layer, but taking into consideration a possible pressure gradient and

variation in the density.

The continuity equation in two dimensions is given by

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
= 0 (A.68)

Time averaging this equation, we get

∂ 〈ρ〉 {u}
∂x

+
∂ 〈ρ〉 {v}

∂y
= 0 (A.69)

A.4.1 Momentum Equation

The Momentum equation in tensor notation is

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

(A.70)

Where

τij = 2µ

(
eij −

1

3

∂uk
∂xk

δij

)
; eij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
Time averaging this, we get

∂ 〈ρ〉 {uiuj}
∂xj

= −∂ 〈p〉
∂xi

+
∂ 〈τij〉
∂xj

(A.71)

We can decompose {uiuj} as

{uiuj} = {ui} {uj}+ {ui′′uj ′′} (A.72)
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Thus the momentum equation becomes

∂ 〈ρ〉 {ui} {uj}
∂xj

= −∂ 〈p〉
∂xi

+
∂ 〈τij〉 − 〈ρ〉 {ui′′uj ′′}

∂xj
(A.73)

In particular the x momentum equation is

∂ 〈ρ〉 {u} {u}
∂x

+
∂ 〈ρ〉 {u} {v}

∂y
= −∂ 〈p〉

∂x
+
∂ 〈τxx〉 − 〈ρ〉 {u′′u′′}

∂x
+
∂ 〈τxy〉 − 〈ρ〉 {u′′v′′}

∂y
(A.74)

A.4.2 Self Similarity

We shall assume that the solutions are self similar, that is, in the coordi-

nate frame of η defined as

η ≡ y − y0

δ(x)
(A.75)

the cross wise average profiles non dimensionalized with suitable reference

values at any stream wise location fall on a single curve. That is to say that

the only independent variable is η. Hence we can convert the equations in

terms of η noting that

∂

∂x
=

∂

∂η

dη

dx
= −1

δ
(y′0 + ηδ′)

d

dη
(A.76)

1 Similarly
∂

∂y
=

∂

∂η

dη

dx
=

1

δ

d

dη
(A.77)

The reference velocity scale is the primary stream velocity U1 and the density

scale is the primary stream density ρ1. Thus we have the definitions

{u}(x, y) ≡ {u} (x, y)

U1

and because of self similarity{u}(x, y) = g(η)

(A.78)

1Note that throughout this derivation ′ represents a derivative with respect to the argu-
ment of the function.
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Similarly for density, we have

〈ρ〉(x, y) ≡ 〈ρ〉 (x, y)

ρ1

because of self similarity 〈ρ〉(x, y) = f(η) (A.79)

And finally for v

{v}(x, y) ≡ {v} (x, y)

U1

and because of self similarity {v}(x, y) = h(η)

(A.80)

A.4.3 Continuity equation

Using this with the time averaged continuity equation we get

− 1

δ
(y′0 + ηδ′)

d

dη
(fg) +

1

δ

d

dη
(fh) = 0 (A.81)

Simplifying gives

(fh)′ = (y′0 + ηδ′) (fg)′ (A.82)

We define

A ≡ A(η, x) ≡ (y′0 + ηδ′) and A′ ≡ dA

dη
= δ′ (A.83)

Thus the continuity equation, time averaged and non dimentionalized is

(fh)′ = A (fg)′ (A.84)

A.4.4 Momentum equation

Time averaged momentum equation when non dimentionalized gives

−A(fgg)′+(fgh)′ = A〈p〉′−A

(
〈τxx〉 − 〈ρ〉 {u′′u′′}

)′
ρ1U2

1

+

(
〈τxy〉 − 〈ρ〉 {u′′v′′}

)′
ρ1U2

1

(A.85)

Defining (
〈τxx〉 − 〈ρ〉 {u′′u′′}

)
ρ1U2

1

≡ Txx (A.86)
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And (
〈τxy〉 − 〈ρ〉 {u′′v′′}

)
ρ1U2

1

≡ Txy (A.87)

Thus the momentum equation reduces to

−A(fgg)′ + (fgh)′ = A〈p〉′ − AT ′xx + Txy′ (A.88)

A.4.5 Integrating the equations

Continuity Equation

Integrating the continuity equation from η = −∞ to η = 0 we get

0ˆ

−∞

(fh)′dη =

0ˆ

−∞

A(fg)′dη (A.89)

Which yields

[(fh)]
∣∣∣0
−∞

=

0ˆ

−∞

A(fg − sr)′dη (A.90)

f0h0 − sh2 = [A(fg − sr)]
∣∣∣0
−∞
−

0ˆ

−∞

(fg − sr)A′dη (A.91)

= y′0(f0g0 − sr)− δ′
0ˆ

−∞

(fg − sr)dη (A.92)

Thus

sh2 = f0h0 + δ′
0ˆ

−∞

(fg − sr)dη − y′0(f0g0 − sr) (A.93)
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Integrating from η = 0 to η =∞ we get

∞̂

0

(fh)′dη =

∞̂

0

A(fg)′dη (A.94)

Which yields

[(fh)]
∣∣∣∞
0

=

∞̂

0

A(fg − 1)′dη (A.95)

h1 − f0h0 = [A(fg − 1)]
∣∣∣∞
0
−
∞̂

0

(fg − 1)A′dη (A.96)

= −y′0(f0g0 − 1)− δ′
∞̂

0

(fg − 1)dη (A.97)

Thus

h1 = f0h0 − δ′
∞̂

0

(fg − 1)dη − y′0(f0g0 − 1) (A.98)

Momentum equation

Integrating the momentum equation η = −∞ to η = 0 we get

−
0ˆ

−∞

A(fgg − srr)′dη +

0ˆ

−∞

(fgh)′dη =

0ˆ

−∞

A
(
〈p〉 − p∞

)′
dη −

0ˆ

−∞

AT ′xxdη +

0ˆ

−∞

Txy′dη(A.99)

∴

− [A(fgg − srr)]
∣∣∣0
−∞

+
0́

−∞
A′(fgg − srr)dη

+f0g0h0 − srh2

=

[
A
(〈
p
〉
− p∞

)] ∣∣∣0
−∞
−

0́

−∞
A′
(〈
p
〉
− p∞

)
dη

− [ATxx]
∣∣∣0
−∞

+
0́

−∞
A′Txxdη + [Txy]

∣∣∣0
−∞

(A.100)

(A.101)
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Substituting the limits and noting that A′ = δ′, and substituting for sh2 we

get the LHS of the above equation as

−y′0 (f0g0g0 − srr)+δ′
0ˆ

−∞

(fgg − srr) dη+f0g0h0−r

f0h0 + δ′
0ˆ

−∞

(fg − sr)dη − y′0(f0g0 − sr)


(A.102)

Which is

y′0f0g0 (r − g0) + δ′
0ˆ

−∞

fg(g − r)dη + f0h0(g0 − r) (A.103)

And finally the LHS becomes

f0 (r − g0) (y′0g0 − h0) + δ′
0ˆ

−∞

fg(g − r)dη (A.104)

The RHS of the momentum equation evaluates to

y′0

(
〈p0〉 − p∞

)
− δ′

0ˆ

−∞

(
〈p0〉 − p∞

)
dη− y′0Txx0 + δ′

0ˆ

−∞

Txxdη + Txy0 (A.105)

Thus

f0 (r − g0) (y′0g0 − h0) + δ′
0́

−∞
fg(g − r)dη =

y′0

(
〈p0〉 − p∞

)
− δ′

0́

−∞

(
〈p〉 − p∞

)
dη − y′0Txx0 + δ′

0́

−∞
Txxdη + Txy0

(A.106)
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Integrating the momentum equation η = 0 to η =∞ we get

−
∞̂

0

A(fgg − 1)′dη +

∞̂

0

(fgh)′dη =

∞̂

0

A
(
〈p〉 − p∞

)′
dη −

∞̂

0

AT ′xxdη +

∞̂

0

Txy′dη(A.107)

∴

− [A(fgg − 1)]
∣∣∣∞
0

+
∞́

0

A′(fgg − 1)dη

+h1 − f0g0h0

=

[
A
(〈
p
〉
− p∞

)] ∣∣∣∞
0
−
∞́

0

A′
(〈
p
〉
− p∞

)
dη

− [ATxx]
∣∣∣∞
0

+
∞́

0

A′Txxdη + [Txy]
∣∣∣∞
0

(A.108)

(A.109)

Substituting the limits and noting that A′ = δ′, and substituting for h1 we get

the LHS of the above equation as

y′0 (f0g0g0 − 1)+δ′
∞̂

0

(fgg − 1) dη−f0g0h0+

f0h0 − δ′
∞̂

0

(fg − 1)dη − y′0(f0g0 − 1)


(A.110)

Which is

y′0f0g0 (g0 − 1) + δ′
∞̂

0

fg(g − 1)dη + f0h0(1− g0) (A.111)

And finally the LHS becomes

f0 (y′0g0 − h0) (g0 − 1) + δ′
∞̂

0

fg(g − 1)dη (A.112)

The RHS of the momentum equation evaluates to

−y′0
(
〈p0〉 − p∞

)
−δ′

∞̂

0

(
〈p0〉 − p∞

)
dη+y′0Txx0 +δ′

∞̂

0

Txxdη−Txy0 (A.113)

Thus
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f0 (y′0g0 − h0) (g0 − 1) + δ′
∞́

0

fg(g − 1)dη

= −y′0
(
〈p0〉 − p∞

)
− δ′

∞́

0

(
〈p〉 − p∞

)
dη + y′0Txx0 + δ′

∞́

0

Txxdη − Txy0

(A.114)

Subtracting A.106 from A.114 gives

f0���
���

���:0
(2g0 − (r + 1)) + δ′

 ∞̂

0

fg(g − 1)dη −
0ˆ

−∞

fg(g − r)dη

(A.115)

= −2y′0

(
〈p0〉 − p∞

)
− δ′

 ∞̂

0

(
〈p〉 − p∞

)
dη −

0ˆ

−∞

(
〈p〉 − p∞

)
dη

(A.116)

+2y′0Txx0 + δ′

 ∞̂

0

Txxdη −
0ˆ

−∞

Txxdη

− 2Txy0(A.117)

Thus rearranging the terms we get

δ′


0́

−∞
fg(g − r)dη +

∞́

0

fg(1− g)dη

+
0́

−∞

(
〈p〉 − p∞ − Txx

)
dη −

∞́

0

(
〈p〉 − p∞ − Txx

)
dη


= 2y′0

(
〈p0〉 − p∞ − Txx0

)
+ 2Txy0 (A.118)

Neglecting the pressure terms, and y′0, we get

δ′

 0ˆ

−∞

fg(g − r)dη +

∞̂

0

fg(1− g)dη

 = 2Txy0 (A.119)
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A.4.6 Observations

Observing Eqn 5.6 we note that the growth rate is the ratio of Txy0 and

the two integrals

I1 ≡
0ˆ

−∞

fg(g − r)dη and I2 ≡
∞̂

0

fg(1− g)dη

Thus the growth rate at a given location is influenced by the local stress

and the local profile of the flow. To illustrate this point, we plot the ac-

tual growth and the expected growth from integral analysis. This is shown

in Fig 5.2, where it can be seen that the initial error arising out of non self

similarity reduces to less than 10% once the flow becomes self similar. Which

confirms the relation between the quantities.

−0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

fg(g − r),fg(1− g)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

η
=

y
−y

0
δ(
x

)

1− r = 0.31

rs(1− r) = 0.27

fg(g − r)

fg(1− g)

0∫
η=−∞

fg(g − r)dη ≈ 0.028

∞∫
η=0

fg(1− g)dη ≈ 0.034

Integral Evaluation at x = 0.300[m]
Set 2 Case:0 Mc=0.35 Uavg=400.00[m/s] r=0.70 s=1.25

Figure A.3: Evaluation of the integrals

[Dots represent the actual measurement, lines the approximate self similar profile

(tanh). The grey dots are unused.]

Figure A.3 shows the evaluation of the integrals. This figure shows that

the integrands are quite close to the self similar profiles, especially in the

respective domains of integration. It is also quite apparent that the integration

202



is a strong function of r and s.

Referred from Section 5.3.1 on Page 146
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A.5 The entropy transport equation

We have the energy equation Eqn(2.9) on Page(48) as

ρ
De

Dt
= −p∇ · u+ σ : ∇u−∇ · q (A.120)

Also considering energy to be a function of entropy, density and species mole

fraction, We get

de = Tds+
p

ρ2
dρ+

∑
j

(
∂e

∂nj

)
ρ,s,ni 6=j

dnj (A.121)

Where the summation is carried over all the species. The chemical potential

of the jth species is defined as

µj ≡
(
∂e

∂nj

)
ρ,s,ni 6=j

(A.122)

Hence the entropy equation turns out to be

de = Tds+
p

ρ2
dρ+

∑
j

µjdnj (A.123)

Substituting this in the energy equation we get

ρT
Ds

Dt
+ ρ

∑
j

µj
Dnj
Dt

+
p

ρ2

Dρ

Dt
= −p∇ · u+ σ : ∇u−∇ · q (A.124)

From the mass conservation equation Eqn(2.1) on Page(48)

Dρ

Dt
= −ρ∇ · u (A.125)

Thus the entropy equation becomes,

ρT
Ds

Dt
+ ρ

∑
j

µj
Dnj
Dt

= +σij
∂uj
∂xi

+
∂

∂xi
k
∂T

∂xi
(A.126)
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Next we use the species diffusion equation

ρ
Dnj
Dt

=
1

Wj

∇ · jj (A.127)

Where ji is the diffusive mass flux of species i Thus the entropy equation

becomes.

ρ
Ds

Dt
=
∑
j

µj
TWj

∇ · jj︸ ︷︷ ︸
Mass transfer

− 1

T
∇ · q︸ ︷︷ ︸

Heat Transfer

+
1

T
σ : ∇u︸ ︷︷ ︸

Shear

(A.128)

We shall now evaluate and separate the production terms as

A.5.1 Heat transfer

The conduction term is
1

T
∇ · q

This can be written as

∇ ·
( q
T

)
+

1

T 2
∇T · q (A.129)

Molecular heat flux happens due to conduction as well as mass transport.

Hence

1

T 2
∇T · q = − λ

T 2
(∇ · T ) (∇ · T )︸ ︷︷ ︸

conduction

+
∑
j

∇T
T 2
· Hj

Wj

jj︸ ︷︷ ︸
species flux

(A.130)

Thus we have

1

T
∇ · q = ∇ ·

( q
T

)
︸ ︷︷ ︸
reversible

− λ

T 2
(∇ · T ) (∇ · T ) +

∑
j

∇T
T 2
· Hj

Wj

jj︸ ︷︷ ︸
irreversible

(A.131)
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A.5.2 Mixing

The term due to mixing is∑
j

µj
TWj

∇ · jj

We can reduce this as

µj
T
∇ · jj = ∇ ·

(
µjjj
T

)
−∇

(µj
T

)
· jj (A.132)

Noting that

µj = Hj − TS0
j +RT ln

(
pj
p0

)
+RT lnXj (A.133)

Where pj is the partial pressure of the jth species The last term on the right

hand side can be evaluated for the jth species as

∇
(µj
T

)
= −Hj

T 2
∇T +

R

Yj
∇Yj −RW

∑
i

∇Yi
Wi

(A.134)

Thus we have

µj
T
∇ · jj = ∇ ·

(
µjjj
T

)
︸ ︷︷ ︸
reversible

+
Hj

T 2
∇T · jj −

R

Yj
∇Yj · jj +RW

(∑
i

∇Yi
Wi

)
· jj︸ ︷︷ ︸

irreversible
(A.135)

Substituting the above relations into the entropy equation we get

ρ
Ds

Dt
=
∑
j

1

Wj

(
∇ ·
(
µjjj
T

)
+
Hj

T 2
∇T · jj −

R

Yj
∇Yj · jj +RW

(∑
i

∇Yi
Wi

)
· jj

)

−

(
∇ ·
( q
T

)
− λ

T 2
(∇ · T ) (∇ · T ) +

∑
j

∇T
T 2
· Hj

Wj

jj

)
+

1

T
σ : ∇u

(A.136)

The above can be simplified and segregated as
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ρ
Ds

Dt
= −∇ ·

( q
T

)
+

λ

T 2
(∇ · T ) (∇ · T )

+
∑
j

∇ ·
(

µj
WjT

)
jj −

∑
j

R

WjYj
∇Yj · jj +RW

∑
i

∇Yi
Wi

·
∑
j

jj
Wj

+
1

T
σ : ∇u

(A.137)

Referred from Section 6.2 on Page 168

207



Bibliography

[Abramowitz, 1963] G. Abramowitz. The theory of turbulent jets, 1963.

[Andrews, 1994] E. Andrews. Nasa’s hypersonic project research - a review. NASA-

TM-107759, October 1994.

[Bardina et al., 1980] J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improved

subgrid scale models for large eddy simulation. AIAA, Fluid & Plasma

Dynamics Conference, 1980.

[Bardina et al., 1997] J. Bardina, P. Huang, and T. Coakley. Turbulence modeling

validation. AIAA paper, 2121:1997, 1997.

[Barre et al., 1994] S. Barre, C. Quine, and J. Dussauge. Compressibility effects on

the structure of supersonic mixing layers: experimental results. Journal of

Fluid Mechanics, 259:47–78, 1994.

[Billig, 1993] F. Billig. Scram: a supersonic combustion ramjet missile. In at 29th

AIAA/SAE/ASME/ASEE Joint Propulsion Conference, AIAA, pages 93–

2329, 1993.

[Birch et al., 1972] S. Birch, D. Rudy, and D. Bunshell. Nasa langley free turbulent

shear flows conference proceedings, vol. i , nasa sp-321. 1972.

[Blumen, 1970] W. Blumen. Shear layer instability of an inviscid compressible fluid.

Journal of Fluid Mechanics, 40(4):769–781, 1970.

[Blumen et al., 1975] W. Blumen, P. Drazin, and D. Billings. Shear layer instability

of an inviscid compressible fluid. part 2. Journal of Fluid Mechanics, 71(2):

305–316, 1975.

208



[Bogdanoff, 1983] D. Bogdanoff. Compressibility effects in turbulent shear layers.

AIAA journal, 21:926, 1983.

[Bradshaw, 1977] P. Bradshaw. Compressible turbulent shear layers. Annual Review

of Fluid Mechanics, 9(1):33–52, 1977.

[Brown and Roshko, 1974] G. Brown and A. Roshko. On density effects and large

structure in turbulent mixing layers. Journal of Fluid Mechanics, 64(4):

775–816, 1974.

[Canuto, 1997] Canuto. Compressible turbulence. The Astrophysical Journal, (482):

827– 851, 1997.

[Chinzei et al., 1986] N. Chinzei, G. Masuya, T. Komuro, A. Murakami, and K. Ku-

dou. Spreading of two-stream supersonic turbulent mixing layers. Physics

of Fluids, 29:1345, 1986.

[Clemens and Mungal, 1995] N. Clemens and M. Mungal. Large-scale structure and

entrainment in the supersonic mixing layer. Journal of Fluid Mechanics, 284

(1):171–216, 1995.

[Clemens and Mungal, 1990] N. T. Clemens and M. G. Mungal. Two and three

dimensional effects in the supersonic mixing layer. AIAA, 1990.

[Curran, 2001] E. Curran. Scramjet engines: the first forty years. Journal of Propul-

sion and Power, 17(6):1138–1148, 2001.

[Curran et al., 1996] E. Curran, W. Heiser, and D. Pratt. Fluid phenomena in scram-

jet combustion systems. Annual review of fluid mechanics, 28(1):323–360,

1996.

[Demetriades and Brower, 1990] A. Demetriades and T. Brower. Experiments on

the free shear layer between two supersonic streams. AIAA, 1990.

[Dimotakis, 1984] P. Dimotakis. Entrainment into a fully developed, two dimensional

shear layer. AIAA, 1984.

[Dimotakis, 1986] P. Dimotakis. Two-dimensional shear-layer entrainment. AIAA

journal, 24(11):1791–1796, 1986.

209



[Drazin and Davey, 1977] P. Drazin and A. Davey. Shear layer instability of an

inviscid compressible fluid. part 3. Journal of Fluid Mechanics, 82(2):255–

260, 1977.

[Dubief and Delcayre, 2000] Y. Dubief and F. Delcayre. On coherent-vortex iden-

tification in turbulence. Journal of Turbulence, page N11, 2000. doi:

10.1088/1468-5248/1/1/011.

[Edwards, 1974] C. L. W. Edwards. A forebody design technique for highly inte-

grated bottom-mounted scramjets with application to a hypersonic research

airplane. NASA TM X-71971, 1974.

[Elliott and Samimy, 1990] G. Elliott and M. Samimy. Compressibility effects in free

shear layers. Physics of Fluids A: Fluid Dynamics, 2:1231, 1990.

[Erdos et al., 1992] J. Erdos, J. Tamango, R. Bakos, and R. Trucco. Experiments

on shear layer mixing at hypervelocity conditions. 30. American Institute

of Astronautics and Aeronautics (AIAA) aerospace sciences meeting and

exhibit, 6(9), 1992.

[Erlebacher et al., 1992] G. Erlebacher, M. Hussaini, C. Speziale, and T. Zang. To-

ward the large-eddy simulation of compressible turbulent flows. Journal of

Fluid Mechanics, 238(1):155–185, 1992.

[Favre, 1964] A. Favre. The mechanics of turbulence. Gordon and Breach, New

York, 1964.
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